本题求一个字符串中的最长递增子序列的长度。

动态规划方程

a[]记录字符串;

d[i]记录以第i个元素为最后一个元素的最长递增序列的长度

则 d[i+1]=1+max(d[j])  其中(j<i+1)并且a[j]<a[i+1]。

这样的话,没更新一个d[i+1],都需要搜索一遍前i项,因而此时复杂度为o(n^2)。

******* 疯狂的分割线 ********

这样的效率显然太低了。通常的想法是能不能借助二分查找优化复杂度至o(nlogn)。

而直接进行二分查找显然不现实(因为无序)

因此转换思路,设置一个数组s[]用于记录 :    s[k]为满足d[i]=k的最小的a[i]   。(天才的一步)

(关于这个s[k]还有一种解释方式,后面再说)

这样,s的下标实质上就保存了最长递增序列的长度,同时由于每访问一个新的a[i]就会尝试在s数组中插入该a[i],因而s[k]就始终是保持有序的。

啧,如果感觉上述解释不够清楚的话,另一种解释方式如下:

本质上一个长度为n的字符串的最大递增子序列的是有限的也就是 [1,n]。因此不妨采用多阶段决策的方式分别考虑每一种长度和他们的递增关系。

因此设置s[]数组来记录 :例如 记最大递增子序列长度为1的子序列的最后一个元素为s[1]; 记最大递增子序列长度为2的子序列的最后一个元素为s[2];s[k]同理。

这样只需遍历一遍a[]字符串,对其中的每一个字符都对s[]做一个更新维护:维护的原则对于a[i]是找到当前s[]中比a[i]小的最大数的后一个位置,该位置就是a[i]应插入的位置,因为该位置插入后可以保证s依然有序,同时所覆盖的原来的值也一定是比a[i]大的。

过程模拟如下:

对于a[]={1,2,4,3}

s初始状态为{-1,inf};

开始遍历a数组;

a[0]=1,二分查找后得到1应该插入s[1]位置;s状态变为{-1,1,inf},s[1]=1;(注意s的定义)

a[1]=2,二分插入后s状态变为(-1,1,2,inf),s[2]=2;

a[4]=4,二分插入后s状态变为{-1,1,2,4,inf},s[3]=4;

a[3]=3, 此时2<3<4,因此二分查找到的位置为当前4的位置,s状态变为{-1,1,2,3,inf},此时s[3]=3;

此时a数组遍历完成,s数组的最大长度为3,也就是所要求的结果。(s数组有一种贪心的意思在里面,每更新一次都保证其值是最小的尾数)

AC代码如下:

#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int maxn=+;
const int inf=;
int a[maxn];
int s[maxn];
int b_search(int *s,int x,int len){//左闭右开
int l=,r=len;
while(l<r){
int mid=l+(r-l)/;
if(s[mid]==x)return mid;
else if(x<s[mid]){
r=mid;
}
else if(x>s[mid]){
l=mid+;
}
}
return l;
}
int main(void){
int n;
cin>>n;
for(int i=;i<n;i++) {
scanf("%d",&a[i]);
}
s[]=-;
int len=;
for(int i=;i<n;i++){
s[len]=inf;
int j=b_search(s,a[i],len+);
if(j==len)len++;
s[j]=a[i];
}
int ans=len-;
cout<<ans<<endl;
return ;
}

POJ2533_Longest Ordered Subsequence (线性动态规划变形)的更多相关文章

  1. poj-2533 longest ordered subsequence(动态规划)

    Time limit2000 ms Memory limit65536 kB A numeric sequence of ai is ordered if a1 < a2 < ... &l ...

  2. (线性DP LIS)POJ2533 Longest Ordered Subsequence

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 66763   Acc ...

  3. poj 2533 Longest Ordered Subsequence 最长递增子序列

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098562.html 题目链接:poj 2533 Longest Ordered Subse ...

  4. Project 4:Longest Ordered Subsequence

    Problem description A numeric sequence of ai is ordered if a1 < a2 < - < aN. Let the subseq ...

  5. 最长上升子序列算法(n^2 及 nlogn) (LIS) POJ2533Longest Ordered Subsequence

    问题描述: 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列 ...

  6. poj 2533Longest Ordered Subsequence

    Longest Ordered Subsequence Description A numeric sequence of ai is ordered if a1 < a2 < - < ...

  7. POJ2533:Longest Ordered Subsequence

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 37454   Acc ...

  8. POJ_2533 Longest Ordered Subsequence 【LIS】

    一.题目 Longest Ordered Subsequence 二.分析 动态规划里的经典问题.重在DP思维. 如果用最原始的DP思想做,状态转移方程为$DP[i] = max(DP[j] + 1) ...

  9. POJ 2533 Longest Ordered Subsequence(最长上升子序列(NlogN)

    传送门 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subseque ...

随机推荐

  1. SimpleDateFormat使用详解 <转>

    public class SimpleDateFormat extends DateFormat SimpleDateFormat 是一个以国别敏感的方式格式化和分析数据的具体类. 它允许格式化 (d ...

  2. Android Activity 半透明效果(Translucent)

    本文转自:http://norety.javaeye.com/blog/648725 今天试着做activity半透明的效果,做出来之后才发现想复杂了!很简单的几句就可以实现,不多说了,贴代码! 1. ...

  3. mysql如何用sql增加字段和注释?

    alter table warn_user_binding add is_valid varchar(10) default 'true' COMMENT '删除标识:true 有效:false 删除 ...

  4. 次小生成树(poj1679)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20737   Accepted: 7281 D ...

  5. 试验性的Numpy教程(译)

    Python中Numpy模块学习: 转自:http://my.oschina.net/u/175377/blog/74406

  6. 利用Linux系统生成随机密码的8种方法

    Linux操作系统的一大优点是对于同样一件事情,你可以使用高达数百种方法来实现它.例如,你可以通过数十种方法来生成随机密码.本文将介绍生成随机密码的十种方法. 1. 使用SHA算法来加密日期,并输出结 ...

  7. Log4Net的简单使用

    在前面的随笔中,已经异常处理过滤器中,我们已经将获取到的错误信息写到队列中去,然后又单独的线程对队列中的错误信息处理,将错误信息输出到制定的文件中,但是如果我们需要改变需求,打算将错误信息输出到数据库 ...

  8. Java学习记录-Lambda表达式示例

    List<Integer> userIds=userInfoList.stream().map(m->m.getUserId()).collect(Collectors.toList ...

  9. slave have equal MySQL Server UUIDs原因及解决

    最近在部署MySQL主从复制架构的时候,碰到了"Last_IO_Error: Fatal error: The slave I/O thread stops because master a ...

  10. ora-00600错误解决一枚

    今天网友遇到ora-600错误,这里把这个ora-600错误的解决方法详细记录一下. 最初报错信息如下: ora-600-图1 ora-600-图2 图3 这里我们可以看到报错控制文件版本不一致,要求 ...