https://vjudge.net/problem/UVA-10917

题意:

给出一个图,求出从1走到2共有多少种走法。前提是他只沿着满足如下条件的道路(A,B)走:存在一条从B出发回家的路径,比所有从A出发回家的路径都短。

思路:

首先用Dijkstra算法求出每个点到家的最短路径,那么题目的要求也就变成了d[B]<d[A],这样,我们创建了一个新的图,当且仅当d[B]<d[A]时加入有向边A->B,这样就是一个DAG,直接用动态规划计数。

 #include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std; const int maxn = + ;
const int INF = 0x3f3f3f3f; int n, m; struct Edge
{
int from, to, dist;
Edge(int u, int v, int d) :from(u), to(v), dist(d){}
}; struct HeapNode
{
int d, u;
HeapNode(int x, int y) :d(x), u(y){}
bool operator < (const HeapNode& rhs) const
{
return d>rhs.d;
}
}; struct Dijkstra
{
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
bool done[maxn];
int d[maxn];
int p[maxn];
int dp[maxn]; void init(int n)
{
this->n = n;
for (int i = ; i < n; i++)
G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int dist)
{
edges.push_back(Edge(from, to, dist));
int m = edges.size();
G[from].push_back(m - );
} void dijkstra(int s)
{
priority_queue<HeapNode> Q;
for (int i = ; i < n; i++) d[i] = INF;
memset(done, , sizeof(done));
d[s] = ;
Q.push(HeapNode(, s));
while (!Q.empty())
{
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if (done[u]) continue;
done[u] = true;
for (int i = ; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if (d[e.to]>d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
p[e.to] = e.from;
Q.push(HeapNode(d[e.to], e.to));
}
}
}
} int DP(int s)
{
if (s == ) return ;
if (dp[s] != -) return dp[s];
dp[s] = ;
for (int i = ; i < G[s].size(); i++)
{
Edge e = edges[G[s][i]];
if (d[e.to] < d[s]) dp[s] += DP(e.to);
}
return dp[s];
}
}t; int main()
{
//freopen("D:\\input.txt", "r", stdin);
int u, v, d;
while (~scanf("%d", &n) && n)
{
scanf("%d", &m);
t.init(n);
for (int i = ; i < m; i++)
{
scanf("%d%d%d", &u, &v, &d);
t.AddEdge(u - , v - , d);
t.AddEdge(v - , u - , d);
}
t.dijkstra();
memset(t.dp, -, sizeof(t.dp));
t.DP();
printf("%d\n", t.dp[]);
}
return ;
}

UVa 10917 林中漫步的更多相关文章

  1. UVA - 10917 - Walk Through the Forest(最短路+记忆化搜索)

    Problem    UVA - 10917 - Walk Through the Forest Time Limit: 3000 mSec Problem Description Jimmy exp ...

  2. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  3. UVA 10917 Walk Through the Forest SPFA

    uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem= ...

  4. UVa 10917 Dijkstra

    本来就是水题一道. 题意:一个人要从点1去到点2,中间还有很多点和很多条边.问你如果他每次走的边(a,b)都满足:a点到目标点的最短距离<b点到目标点的最短距离,那么他从点1出发到点2总共有多少 ...

  5. Uva 10917

    题目链接:http://vjudge.net/contest/143062#problem/A 题意:一个人要从点1去到点2,中间还有很多点和很多条边.问你如果他每次走的边(a,b)都满足:a点到目标 ...

  6. UVA 10917 Walk Through the Forest(dijkstra+DAG上的dp)

    用新模板阿姨了一天,换成原来的一遍就ac了= = 题意很重要..最关键的一句话是说:若走A->B这条边,必然是d[B]<d[A],d[]数组保存的是各点到终点的最短路. 所以先做dij,由 ...

  7. UVa 10917 A Walk Through the Forest

    A Walk Through the Forest Time Limit:1000MS  Memory Limit:65536K Total Submit:48 Accepted:15 Descrip ...

  8. uva 10917 Walk Through The Forest

    题意: 一个人从公司回家,他可以从A走到B如果从存在从B出发到家的一条路径的长度小于任何一条从A出发到家的路径的长度. 问这样的路径有多少条. 思路: 题意并不好理解,存在从B出发到家的一条路径的长度 ...

  9. uva 10917 最短路+dp

    https://vjudge.net/problem/UVA-10917 给出N点M边的无向图,没重边.对于点A,B,当且仅当从B到终点的最短路小于任何一条从A到终点的最短路时,才考虑从A走到B,否则 ...

随机推荐

  1. 【BZOJ1458】士兵占领 最小流

    [BZOJ1458]士兵占领 Description 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵.我们称这些士兵占 ...

  2. Windows Phone 几种弹出框提示方式

    首先,我们需要在网络上下载一个Coding4Fun 然后,引用  using Coding4Fun.Phone.Controls.Toolkit;                using Codin ...

  3. DFS判断正环

    hdu1217 Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. session.cookie.lifetime和session.gc.maxlifetime的关系

    session.cookie.lifetime session.cookie.lifetime 默认是0,即浏览器关闭,session失效:修改这个值的作用是修改sessionid以cookie的形式 ...

  5. sublime3095-注册码下载安装

    链接:http://pan.baidu.com/s/1hqejFKS 下载地址:下载 提取密码:egh5 ----- BEGIN LICENSE ----- Andrew Weber Single U ...

  6. 自动化工具构建vue项目

    其实之前对vue的话也有过一段时间的学习,博客园也是写了5篇vue的学习笔记.但是一直是通过CDN的方式在html文件头部引入vue.js,然后实例化vue对象绑定Dom,写组件写方法.就算是在实际项 ...

  7. Python开发【Django】:组合搜索、JSONP、XSS过滤

    组合搜索 做博客后台时,需要根据文章的类型做不同的检索 1.简单实现 关联文件: from django.conf.urls import url from . import views urlpat ...

  8. redhat 7.2 内网安装docker

    本文介绍在内网环境下如果通过网络代理映射来完成docekr的安装,首先在能上网的windows机器上安装squid,并启动,本实例中windows机器IP为 192.168.192.101 ,squi ...

  9. 【Python】Python 打印和输出更多用法。

    Python 打印和输出 简述 在编程实践中,print 的使用频率非常高,特别是程序运行到某个时刻,要检测产生的结果时,必须用 print 来打印输出. 关于 print 函数,前面很多地方已经提及 ...

  10. 2.1 The Object Model -- Classes and Instances(类和实例)

    一.Defining Classes(定义类) 1. 定义一个新的Ember类,调用Ember.Object上的extend()方法: example:定义了一个含有say()方法的新的Person类 ...