Katharopoulos A, Fleuret F. Not All Samples Are Created Equal: Deep Learning with Importance Sampling[J]. arXiv: Learning, 2018.

@article{katharopoulos2018not,

title={Not All Samples Are Created Equal: Deep Learning with Importance Sampling},

author={Katharopoulos, Angelos and Fleuret, F},

journal={arXiv: Learning},

year={2018}}

本文提出一种删选合适样本的方法, 这种方法基于收敛速度的一个上界, 而并非完全基于gradient norm的方法, 使得计算比较简单, 容易实现.

主要内容

设\((x_i,y_i)\)为输入输出对, \(\Psi(\cdot;\theta)\)代表网络, \(\mathcal{L}(\cdot, \cdot)\)为损失函数, 目标为

\[\tag{1}
\theta^* = \arg \min_{\theta} \frac{1}{N} \sum_{i=1}^N\mathcal{L}(\Psi(x_i;\theta),y_i),
\]

其中\(N\)是总的样本个数.

假设在第\(t\)个epoch的时候, 样本(被选中)的概率分布为\(p_1^t,\ldots,p_N^t\), 以及梯度权重为\(w_1^t, \ldots, w_N^t\), 那么\(P(I_t=i)=p_i^t\)且

\[\tag{2}
\theta_{t+1}=\theta_t-\eta w_{I_t}\nabla_{\theta_t} \mathcal{L}(\Psi(x_{I_t};\theta_t),y_{I_t}),
\]

在一般SGD训练中\(p_i=1/N,w_i=1\).

定义\(S\)为SGD的收敛速度为:

\[\tag{3}
S :=-\mathbb{E}_{P_t}[\|\theta_{t+1}-\theta^*\|_2^2-\|\theta_t-\theta^*\|_2^2],
\]

如果我们令\(w_i=\frac{1}{Np_i}\) 则



定义\(G_i=w_i\nabla_{\theta_t} \mathcal{L}(\Psi(x_{i};\theta_t),y_{i})\)



我们自然希望\(S\)能够越大越好, 此时即负项越小越好.

定义\(\hat{G}_i \ge \|\nabla_{\theta_t} \mathcal{L}(\Psi(x_{i};\theta_t),y_{i})\|_2\), 既然



(7)式我有点困惑,我觉得(7)式右端和最小化(6)式的负项(\(\mathrm{Tr}(\mathbb{V}_{P_t}[G_{I_t}])+\|\mathbb{E}_{P_t}[G_{I_t}]\|_2^2\))是等价的.

于是有

最小化右端(通过拉格朗日乘子法)可得\(p_i \propto \hat{G}_i\), 所以现在我们只要找到一个\(\hat{G}_i\)即可.

这个部分需要引入神经网络的反向梯度的公式, 之前有讲过,只是论文的符号不同, 这里不多赘诉了.

注意\(\rho\)的计算是比较复杂的, 但是\(p_i \propto \hat{G}_i\), 所以我们只需要计算\(\|\cdot\|\)部分, 设此分布为\(g\).

另外, 在最开始的时候, 神经网络没有得到很好的训练, 权重大小相差无几, 这个时候是近似正态分布的, 所以作者考虑设计一个指标,来判断是否需要根据样本分布\(g\)来挑选样本. 作者首先衡量



显然当这部分足够大的时候我们可以采用分布\(g\)而非正态分布\(u\), 但是这个指标不易判断, 作者进步除以\(\mathrm{Tr}(\mathbb{V}_u[G_i])\).



显然\(\tau\)越大越好, 我们自然可以人为设置一个\(\tau_{th}\). 算法如下

最后, 个人认为这个算法能减少计算量主要是因为样本少了, 少在一开始用正态分布抽取了一部分, 所以...

"代码"

主要是\(\hat{G}_i\)部分的计算, 因为涉及到中间变量的导数, 所以需要用到retain_grad().

"""
这里只是一个例子
""" import torch
import torch.nn as nn class Net(nn.Module): def __init__(self):
super(Net, self).__init__()
self.dense = nn.Sequential(
nn.Linear(10, 256),
nn.ReLU(),
nn.Linear(256, 10),
)
self.final = nn.ReLU() def forward(self, x):
z = self.dense(x)
z.retain_grad()
out = self.final(z)
return out, z if __name__ == "__main__": net = Net()
criterion = nn.MSELoss() x = torch.rand((2, 10))
y = torch.rand((2, 10)) out, z = net(x)
loss = criterion(out, y)
loss.backward()
print(z.grad) #这便是我们所需要的

Not All Samples Are Created Equal: Deep Learning with Importance Sampling的更多相关文章

  1. Accelerating Deep Learning by Focusing on the Biggest Losers

    目录 概 相关工作 主要内容 代码 Accelerating Deep Learning by Focusing on the Biggest Losers 概 思想很简单, 在训练网络的时候, 每个 ...

  2. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

  3. Deep Learning in R

    Introduction Deep learning is a recent trend in machine learning that models highly non-linear repre ...

  4. Summary on deep learning framework --- PyTorch

    Summary on deep learning framework --- PyTorch  Updated on 2018-07-22 21:25:42  import osos.environ[ ...

  5. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  6. Deep Learning 5_深度学习UFLDL教程:PCA and Whitening_Exercise(斯坦福大学深度学习教程)

    前言 本文是基于Exercise:PCA and Whitening的练习. 理论知识见:UFLDL教程. 实验内容:从10张512*512自然图像中随机选取10000个12*12的图像块(patch ...

  7. (转)WHY DEEP LEARNING IS SUDDENLY CHANGING YOUR LIFE

    Main Menu Fortune.com       E-mail Tweet Facebook Linkedin Share icons By Roger Parloff Illustration ...

  8. (转)Deep Learning Research Review Week 1: Generative Adversarial Nets

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...

  9. (转)The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About The 9 Deep Learning Papers You Need To Know Abo ...

随机推荐

  1. 商业爬虫学习笔记day1

    day1 一. HTTP 1.介绍: https://www.cnblogs.com/vamei/archive/2013/05/11/3069788.html http://blog.csdn.ne ...

  2. 前端必须知道的 Nginx 知识

    Nginx一直跟我们息息相关,它既可以作为Web 服务器,也可以作为负载均衡服务器,具备高性能.高并发连接等. 1.负载均衡 当一个应用单位时间内访问量激增,服务器的带宽及性能受到影响, 影响大到自身 ...

  3. 艺恩网内地总票房排名Top100信息及其豆瓣评分详情爬取

    前两天用python2写的一个小爬虫 主要实现了从http://www.cbooo.cn/Alltimedomestic这么个网页中爬取每一部电影的票房信息等,以及在豆瓣上该电影的评分信息 代码如下 ...

  4. Python 基于python实现的http+json协议接口自动化测试框架源码(实用改进版)

    目录 1.      写在前面 2.      开发环境 3.      大致流程 4.      框架简介 5.      运行结果展示 6.      文件与配置 7.      测试接口实例 n ...

  5. Give You My Best Wishes

    亲耐滴IT童鞋们: 感谢大家一直以来的支持,因为有你们的支持,才有我这么"拼"的动力!!爱你们哟 OC的学习已经告一段落,希望大家通过阅读这几篇浅薄的随笔,能够寻找到解决问题的方法 ...

  6. Linux基础命令---ab测试apache性能

    ab ab指令是apache的性能测试工具,它可以测试当前apache服务器的运行性能,显示每秒中可以处理多少个http请求. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.F ...

  7. golang vendor

    安装参考 https://blog.csdn.net/huwh_/article/details/77169858 Go 1.5引入了vendor文件夹,其对语言使用,go命令没有任何影响.若某个路径 ...

  8. 【编程思想】【设计模式】【行为模式Behavioral】command

    Python版 https://github.com/faif/python-patterns/blob/master/behavioral/command.py #!/usr/bin/env pyt ...

  9. 【Matlab】xticks/xticklabels的用法

    先说一下我自己的理解,这东西就是把原来的有的标签位置换成自己的标签名称,一般都是要手动设置看物理意义. https://ww2.mathworks.cn/help/matlab/ref/xticks. ...

  10. 07-Spring5 WebFlux响应式编程

    SpringWebFlux介绍 简介 SpringWebFlux是Spring5添加的新模块,用于Web开发,功能和SpringMvc类似的,WebFlux使用当前一种比较流行的响应式编程框架 使用传 ...