题目传送门

题目大意

给出一个 \(n\) 个点的树,每条边有边权和颜色 \(0,1\) ,定义一条链合法当且仅当 \(0,1\) 颜色的边数之比小于等于 \(2\) ,求所有合法的链的边权之积的积。

\(n\le 10^5\),答案对 \(10^9+7\) 取模。

思路

边分治板题,但是因为边界问题爆炸了。。。

首先先容斥一下,即总答案除以不合法答案,然后你发现总答案特别好求,不合法方案可是使用边分治解决。

时间复杂度 \(\Theta(n\log^2 n)\) 。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define mod 1000000007
#define MAXN 800005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int n,ans = 1; int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = 1ll * a * a % mod) if (b & 1) res = 1ll * res * a % mod;
return res;
}
int inv (int x){return qkpow (x,mod - 2);} namespace Graph{
#define PII pair<int,int>
int cnt = 1,toop = 1,pres[MAXN],to[MAXN << 1],wei[MAXN << 1],col[MAXN << 1],nxt[MAXN << 1],head[MAXN],siz[MAXN];bool vis[MAXN];
void Add_Edge (int u,int v,int w,int c){
to[++ toop] = v,wei[toop] = w,col[toop] = c,nxt[toop] = head[u],head[u] = toop;
to[++ toop] = u,wei[toop] = w,col[toop] = c,nxt[toop] = head[v],head[v] = toop;
}
struct node{
int R,B,dis;
};
node *f,T1[MAXN],T2[MAXN];
void dfs (int u,int fa,int totr,int totb,int pre){
if (u <= n) f[++ cnt] = node {totr,totb,pre};
for (Int i = head[u];i;i = nxt[i]){
int v = to[i];
if (v == fa || vis[i]) continue;
dfs (v,u,totr + (col[i] == 0),totb + (col[i] == 1),1ll * pre * wei[i] % mod);
}
}
int ed,lim,Siz,lena,lenb;
void findedge (int u,int fa){//找重边
siz[u] = 1;
for (Int i = head[u];i;i = nxt[i]){
int v = to[i];
if (v == fa || vis[i]) continue;
findedge (v,u),siz[u] += siz[v];
int tmp = max (siz[v],Siz - siz[v]);
if (tmp < lim) ed = i,lim = tmp;
}
}
bool cmp1 (node a,node b){return 2 * a.B - a.R < 2 * b.B - b.R;}
bool cmp2 (node a,node b){return 2 * a.R - a.B < 2 * b.R - b.B;}
void Solve (int u,int S){
if (S <= 1) return ;
lim = Siz = S,findedge (u,0),vis[ed] = vis[ed ^ 1] = 1;
cnt = 0,f = T1,dfs (to[ed],0,0,0,1),lena = cnt;
cnt = 0,f = T2,dfs (to[ed ^ 1],0,0,0,1),lenb = cnt;
for (Int i = 1;i <= lenb;++ i) T2[i].R += (col[ed] == 0),T2[i].B += (col[ed] == 1),T2[i].dis = 1ll * T2[i].dis * wei[ed] % mod;
sort (T1 + 1,T1 + lena + 1,cmp1);
pres[0] = 1;for (Int i = 1;i <= lena;++ i) pres[i] = 1ll * pres[i - 1] * T1[i].dis % mod;
for (Int i = 1;i <= lenb;++ i){
int now = T2[i].R - 2 * T2[i].B,l = 1,r = lena,fuckans = 0;
while (l <= r){
int mid = (l + r) >> 1;
if (2 * T1[mid].B - T1[mid].R < now) fuckans = mid,l = mid + 1;
else r = mid - 1;
}
ans = 1ll * ans * qkpow (T2[i].dis,fuckans) % mod * pres[fuckans] % mod;
}
sort (T1 + 1,T1 + lena + 1,cmp2);
pres[0] = 1;for (Int i = 1;i <= lena;++ i) pres[i] = 1ll * pres[i - 1] * T1[i].dis % mod;
for (Int i = 1;i <= lenb;++ i){
int now = T2[i].B - 2 * T2[i].R,l = 1,r = lena,fuckans = 0;
while (l <= r){
int mid = (l + r) >> 1;
if (2 * T1[mid].R - T1[mid].B < now) fuckans = mid,l = mid + 1;
else r = mid - 1;
}
ans = 1ll * ans * qkpow (T2[i].dis,fuckans) % mod * pres[fuckans] % mod;
}
int tx = to[ed],ty = to[ed ^ 1];
if (siz[tx] > siz[ty]) siz[tx] = S - siz[ty];
else siz[ty] = S - siz[tx];
Solve (tx,siz[tx]),Solve (ty,siz[ty]);
}
} int cnt,all = 1,toop = 1,to[MAXN << 1],wei[MAXN << 1],col[MAXN << 1],nxt[MAXN << 1],head[MAXN],las[MAXN],siz[MAXN]; void Add_Edge (int u,int v,int w,int c){
to[++ toop] = v,wei[toop] = w,col[toop] = c,nxt[toop] = head[u],head[u] = toop;
to[++ toop] = u,wei[toop] = w,col[toop] = c,nxt[toop] = head[v],head[v] = toop;
} void dfs (int u,int fa){
siz[u] = 1;
for (Int i = head[u];i;i = nxt[i]){
int v = to[i],w = wei[i],c = col[i];
if (v == fa) continue;
if (!las[u]) las[u] = u,Graph::Add_Edge (u,v,w,c);
else ++ cnt,Graph::Add_Edge (las[u],cnt,1,-1),Graph::Add_Edge (las[u] = cnt,v,w,c);
dfs (v,u),siz[u] += siz[v],all = 1ll * all * qkpow (w,1ll * siz[v] * (n - siz[v]) % (mod - 1)) % mod;
}
} signed main(){
read (n),cnt = n;
for (Int i = 2,u,v,w,c;i <= n;++ i) read (u,v,w,c),Add_Edge (u,v,w,c);
dfs (1,0),Graph::Solve (1,cnt),write (1ll * all * inv (ans) % mod),putchar ('\n');
return 0;
}

题解 CF833D Red-Black Cobweb的更多相关文章

  1. 【CF833D】Red-Black Cobweb(点分治)

    [CF833D]Red-Black Cobweb(点分治) 题面 CF 有一棵树,每条边有一个颜色(黑白)和一个权值,定义一条路径是好的,当且仅当这条路径上所有边的黑白颜色个数a,b满足2min(a, ...

  2. 【CF833D】Red-Black Cobweb

    [CF833D]Red-Black Cobweb 题面 洛谷 题解 看到这种统计路径的题目当然是淀粉质啦. 考虑转化一下信息设一条路径上有红点\(a\)个,黑点\(b\)个 则\(2min(a,b)\ ...

  3. Hdoj 1312.Red and Black 题解

    Problem Description There is a rectangular room, covered with square tiles. Each tile is colored eit ...

  4. CF833D Red-Black Cobweb

    题面 题解 点分治大火题... 设白边数量为$a$,黑边为$b$,则$2min(a,b)\geq max(a,b)$ 即$2a\geq b\;\&\&2b\geq a$ 考虑点分治时如 ...

  5. 题解报告:hdu 1312 Red and Black(简单dfs)

    Problem Description There is a rectangular room, covered with square tiles. Each tile is colored eit ...

  6. poj 1979 Red and Black 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=1979 Description There is a rectangular room, covered with square tiles ...

  7. 【CF1425B】 Blue and Red of Our Faculty! 题解

    原题链接 简要翻译: 有一个连通图,A和B同时从点1出发,沿不同的路径前进.原本,图上的每一条边都是灰色的.A将经过的边涂成红色,B将经过的边涂成蓝色的.每个回合每个人只能走灰色的边.当某个回合中不存 ...

  8. CF833D Red-Black Cobweb 点分治、树状数组

    传送门 统计所有路径的边权乘积的乘积,不难想到点分治求解. 边权颜色比例在\([\frac{1}{2},2]\)之间,等价于\(2B \geq R , 2R \geq B\)(\(R,B\)表示红色和 ...

  9. 洛谷 CF399B【Red and Blue Balls】题解

    n年没有更博客:我总结出了规律,当学的东西很难得时候都去学习,没有时间写博客,只有 内容对于我这种蒟蒻友好,又让我非常闲的慌时才写博客,这种博客以后也没有价值(也有些是做完一道题有成就感写的) 最近内 ...

随机推荐

  1. 用C++实现的有理数(分数)四则混合运算计算器

    实现目标 用C++实现下图所示的一个console程序: 其中: 1.加减乘除四种运算符号分别用+.-.*./表示, + 和 - 还分别用于表示正号和负号. 2.分数的分子和分母以符号 / 分隔. 3 ...

  2. AndroidJetpack Fragment之Navigation和ViewPager2

    新的Fragment导航方式:Navigation 1.创建若干个fragment 2.添加导航 1)新建Navigation:右键res文件夹,New->Android Resource Fi ...

  3. 剑指 Offer 32 - I. 从上到下打印二叉树

    剑指 Offer 32 - I. 从上到下打印二叉树 从上到下打印出二叉树的每个节点,同一层的节点按照从左到右的顺序打印. 例如: 给定二叉树: [3,9,20,null,null,15,7], 3 ...

  4. 字符串截取子串(Java substring , indexOf)

    前言 因为之前java课设做的是股票分析系统,我找的接口返回的是一个.csv文件,因为这种文件里面的数据是以逗号分隔的,所以要对数据进行分析的时候需要截取子串,并且以逗号作为截取的标志.所以接下来就说 ...

  5. 20210715 noip16

    考场 乍一看 T1 像是二分答案,手玩样例发现可以 \(O(k^2)\) 枚举点对,贪心地更新答案,完了?有点不信,先跳了 T2 的形式有点像逆序对,但没啥想法 T3 的式子完全不知道如何处理,一看就 ...

  6. redis跨实例迁移 & redis上云

    1)redis跨实例迁移--源实例db11迁移至目标实例db30 root@fe2e836e4470:/data# redis-cli -a pwd1 -n 11 keys \* |while rea ...

  7. 为老的vueCli项目添加vite支持

    1.前言 接手公司的某个项目已经两年了,现在每次启动项目都接近1分钟,hmr也要好几秒的时间,but vite2发布之后就看到了曙光,但是一直没有动手进行升级,昨天终于忍不住了,升级之后几秒钟就完成了 ...

  8. jsp&mvc开发模式&jstl标签&三层架构

    目录 jsp 概念 原理 jsp 的脚本 jsp的内置对象 指令 注释 mvc:开发模式 jsp演变历史 mvc 优缺点 El表达式 JSTL 标签 练习 三层架构:软件设计架构 案例:用户信息列表展 ...

  9. 第七章:网络优化与正则化(Part1)

    任何数学技巧都不能弥补信息的缺失. --科尼利厄斯·兰佐斯(Cornelius Lanczos) 匈牙利数学家.物理学家 文章相关 1 第七章:网络优化与正则化(Part1) 2 第七章:网络优化与正 ...

  10. 解决vscode可以编译通过c++项目,但头文件有红色波浪线的问题

    解决vscode可以编译通过c++项目,但头文件有红色波浪线的问题 一.问题描述 我是在Ubuntu 16.04的环境下,用vscode写代码的,一般不使用vscode自带的编译环境,而是用cmake ...