题目传送门

题目大意

给出一个 \(n\) 个点的树,每条边有边权和颜色 \(0,1\) ,定义一条链合法当且仅当 \(0,1\) 颜色的边数之比小于等于 \(2\) ,求所有合法的链的边权之积的积。

\(n\le 10^5\),答案对 \(10^9+7\) 取模。

思路

边分治板题,但是因为边界问题爆炸了。。。

首先先容斥一下,即总答案除以不合法答案,然后你发现总答案特别好求,不合法方案可是使用边分治解决。

时间复杂度 \(\Theta(n\log^2 n)\) 。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define mod 1000000007
#define MAXN 800005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int n,ans = 1; int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = 1ll * a * a % mod) if (b & 1) res = 1ll * res * a % mod;
return res;
}
int inv (int x){return qkpow (x,mod - 2);} namespace Graph{
#define PII pair<int,int>
int cnt = 1,toop = 1,pres[MAXN],to[MAXN << 1],wei[MAXN << 1],col[MAXN << 1],nxt[MAXN << 1],head[MAXN],siz[MAXN];bool vis[MAXN];
void Add_Edge (int u,int v,int w,int c){
to[++ toop] = v,wei[toop] = w,col[toop] = c,nxt[toop] = head[u],head[u] = toop;
to[++ toop] = u,wei[toop] = w,col[toop] = c,nxt[toop] = head[v],head[v] = toop;
}
struct node{
int R,B,dis;
};
node *f,T1[MAXN],T2[MAXN];
void dfs (int u,int fa,int totr,int totb,int pre){
if (u <= n) f[++ cnt] = node {totr,totb,pre};
for (Int i = head[u];i;i = nxt[i]){
int v = to[i];
if (v == fa || vis[i]) continue;
dfs (v,u,totr + (col[i] == 0),totb + (col[i] == 1),1ll * pre * wei[i] % mod);
}
}
int ed,lim,Siz,lena,lenb;
void findedge (int u,int fa){//找重边
siz[u] = 1;
for (Int i = head[u];i;i = nxt[i]){
int v = to[i];
if (v == fa || vis[i]) continue;
findedge (v,u),siz[u] += siz[v];
int tmp = max (siz[v],Siz - siz[v]);
if (tmp < lim) ed = i,lim = tmp;
}
}
bool cmp1 (node a,node b){return 2 * a.B - a.R < 2 * b.B - b.R;}
bool cmp2 (node a,node b){return 2 * a.R - a.B < 2 * b.R - b.B;}
void Solve (int u,int S){
if (S <= 1) return ;
lim = Siz = S,findedge (u,0),vis[ed] = vis[ed ^ 1] = 1;
cnt = 0,f = T1,dfs (to[ed],0,0,0,1),lena = cnt;
cnt = 0,f = T2,dfs (to[ed ^ 1],0,0,0,1),lenb = cnt;
for (Int i = 1;i <= lenb;++ i) T2[i].R += (col[ed] == 0),T2[i].B += (col[ed] == 1),T2[i].dis = 1ll * T2[i].dis * wei[ed] % mod;
sort (T1 + 1,T1 + lena + 1,cmp1);
pres[0] = 1;for (Int i = 1;i <= lena;++ i) pres[i] = 1ll * pres[i - 1] * T1[i].dis % mod;
for (Int i = 1;i <= lenb;++ i){
int now = T2[i].R - 2 * T2[i].B,l = 1,r = lena,fuckans = 0;
while (l <= r){
int mid = (l + r) >> 1;
if (2 * T1[mid].B - T1[mid].R < now) fuckans = mid,l = mid + 1;
else r = mid - 1;
}
ans = 1ll * ans * qkpow (T2[i].dis,fuckans) % mod * pres[fuckans] % mod;
}
sort (T1 + 1,T1 + lena + 1,cmp2);
pres[0] = 1;for (Int i = 1;i <= lena;++ i) pres[i] = 1ll * pres[i - 1] * T1[i].dis % mod;
for (Int i = 1;i <= lenb;++ i){
int now = T2[i].B - 2 * T2[i].R,l = 1,r = lena,fuckans = 0;
while (l <= r){
int mid = (l + r) >> 1;
if (2 * T1[mid].R - T1[mid].B < now) fuckans = mid,l = mid + 1;
else r = mid - 1;
}
ans = 1ll * ans * qkpow (T2[i].dis,fuckans) % mod * pres[fuckans] % mod;
}
int tx = to[ed],ty = to[ed ^ 1];
if (siz[tx] > siz[ty]) siz[tx] = S - siz[ty];
else siz[ty] = S - siz[tx];
Solve (tx,siz[tx]),Solve (ty,siz[ty]);
}
} int cnt,all = 1,toop = 1,to[MAXN << 1],wei[MAXN << 1],col[MAXN << 1],nxt[MAXN << 1],head[MAXN],las[MAXN],siz[MAXN]; void Add_Edge (int u,int v,int w,int c){
to[++ toop] = v,wei[toop] = w,col[toop] = c,nxt[toop] = head[u],head[u] = toop;
to[++ toop] = u,wei[toop] = w,col[toop] = c,nxt[toop] = head[v],head[v] = toop;
} void dfs (int u,int fa){
siz[u] = 1;
for (Int i = head[u];i;i = nxt[i]){
int v = to[i],w = wei[i],c = col[i];
if (v == fa) continue;
if (!las[u]) las[u] = u,Graph::Add_Edge (u,v,w,c);
else ++ cnt,Graph::Add_Edge (las[u],cnt,1,-1),Graph::Add_Edge (las[u] = cnt,v,w,c);
dfs (v,u),siz[u] += siz[v],all = 1ll * all * qkpow (w,1ll * siz[v] * (n - siz[v]) % (mod - 1)) % mod;
}
} signed main(){
read (n),cnt = n;
for (Int i = 2,u,v,w,c;i <= n;++ i) read (u,v,w,c),Add_Edge (u,v,w,c);
dfs (1,0),Graph::Solve (1,cnt),write (1ll * all * inv (ans) % mod),putchar ('\n');
return 0;
}

题解 CF833D Red-Black Cobweb的更多相关文章

  1. 【CF833D】Red-Black Cobweb(点分治)

    [CF833D]Red-Black Cobweb(点分治) 题面 CF 有一棵树,每条边有一个颜色(黑白)和一个权值,定义一条路径是好的,当且仅当这条路径上所有边的黑白颜色个数a,b满足2min(a, ...

  2. 【CF833D】Red-Black Cobweb

    [CF833D]Red-Black Cobweb 题面 洛谷 题解 看到这种统计路径的题目当然是淀粉质啦. 考虑转化一下信息设一条路径上有红点\(a\)个,黑点\(b\)个 则\(2min(a,b)\ ...

  3. Hdoj 1312.Red and Black 题解

    Problem Description There is a rectangular room, covered with square tiles. Each tile is colored eit ...

  4. CF833D Red-Black Cobweb

    题面 题解 点分治大火题... 设白边数量为$a$,黑边为$b$,则$2min(a,b)\geq max(a,b)$ 即$2a\geq b\;\&\&2b\geq a$ 考虑点分治时如 ...

  5. 题解报告:hdu 1312 Red and Black(简单dfs)

    Problem Description There is a rectangular room, covered with square tiles. Each tile is colored eit ...

  6. poj 1979 Red and Black 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=1979 Description There is a rectangular room, covered with square tiles ...

  7. 【CF1425B】 Blue and Red of Our Faculty! 题解

    原题链接 简要翻译: 有一个连通图,A和B同时从点1出发,沿不同的路径前进.原本,图上的每一条边都是灰色的.A将经过的边涂成红色,B将经过的边涂成蓝色的.每个回合每个人只能走灰色的边.当某个回合中不存 ...

  8. CF833D Red-Black Cobweb 点分治、树状数组

    传送门 统计所有路径的边权乘积的乘积,不难想到点分治求解. 边权颜色比例在\([\frac{1}{2},2]\)之间,等价于\(2B \geq R , 2R \geq B\)(\(R,B\)表示红色和 ...

  9. 洛谷 CF399B【Red and Blue Balls】题解

    n年没有更博客:我总结出了规律,当学的东西很难得时候都去学习,没有时间写博客,只有 内容对于我这种蒟蒻友好,又让我非常闲的慌时才写博客,这种博客以后也没有价值(也有些是做完一道题有成就感写的) 最近内 ...

随机推荐

  1. java 接口代理

    接口 public interface Cc { void say(); } 实现类: public class C implements Cc{ @Override public void say( ...

  2. swiper tabs综合示例

    html部分: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <m ...

  3. Python3-sqlalchemy-orm 查询、修改

    #-*-coding:utf-8-*- #__author__ = "logan.xu" import sqlalchemy from sqlalchemy import crea ...

  4. 电子设备的使用方法-第5版(佳明智能腕表小米手机联想轻薄笔记本群晖存储)我的腾讯QQ电子邮箱地址是 595076941@qq.com - 2021年9月5日

      电子设备的使用方法-第5版   (佳明智能腕表小米手机联想轻薄笔记本群晖存储) 2021年9月5日 我的腾讯QQ电子邮箱地址是  595076941@qq.com 前言 大家好,我叫徐晓亮,今天我 ...

  5. 一、docker部署Jenkins

    1.部署启动脚本: [root@node10 docker-data]# cat start.sh docker run -d \ --restart=unless-stopped \ -v /opt ...

  6. Docker下制作一个容器镜像

    操作过程描述: (1)先基于centos的镜像启动一个centos容器 (2)在这个容器中安装nginx (3)然后把这个已经安装了nginx的容器制作成一个docker的镜像 操作:docker c ...

  7. zt:我使用过的Linux命令之ar - 创建静态库.a文件

    我使用过的Linux命令之ar - 创建静态库.a文件 本文链接:http://codingstandards.iteye.com/blog/1142358    (转载请注明出处) 用途说明 创建静 ...

  8. 深度学习——前向传播算法和反向传播算法(BP算法)及其推导

    1 BP算法的推导 图1 一个简单的三层神经网络 图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本,通过前向运算得到 ...

  9. PTA 面向对象程序设计 6-2 逆序字符串

    6-2 逆序字符串 设计一个void类型的函数reverse_string,其功能是将一个给定的字符串逆序.例如,给定字符串为"hello",逆序后为"olleh&quo ...

  10. DEDEcms手机网站添加详情内页上一页/下一页的翻页功能

    修改文件include/arc.archives.class.php文件. 1.搜索 function GetPreNext($gtype='') 2.将这个函数的所有内容替换为 function G ...