题解 CF833D Red-Black Cobweb
题目大意
给出一个 \(n\) 个点的树,每条边有边权和颜色 \(0,1\) ,定义一条链合法当且仅当 \(0,1\) 颜色的边数之比小于等于 \(2\) ,求所有合法的链的边权之积的积。
\(n\le 10^5\),答案对 \(10^9+7\) 取模。
思路
边分治板题,但是因为边界问题爆炸了。。。
首先先容斥一下,即总答案除以不合法答案,然后你发现总答案特别好求,不合法方案可是使用边分治解决。
时间复杂度 \(\Theta(n\log^2 n)\) 。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define mod 1000000007
#define MAXN 800005
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,ans = 1;
int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = 1ll * a * a % mod) if (b & 1) res = 1ll * res * a % mod;
return res;
}
int inv (int x){return qkpow (x,mod - 2);}
namespace Graph{
#define PII pair<int,int>
int cnt = 1,toop = 1,pres[MAXN],to[MAXN << 1],wei[MAXN << 1],col[MAXN << 1],nxt[MAXN << 1],head[MAXN],siz[MAXN];bool vis[MAXN];
void Add_Edge (int u,int v,int w,int c){
to[++ toop] = v,wei[toop] = w,col[toop] = c,nxt[toop] = head[u],head[u] = toop;
to[++ toop] = u,wei[toop] = w,col[toop] = c,nxt[toop] = head[v],head[v] = toop;
}
struct node{
int R,B,dis;
};
node *f,T1[MAXN],T2[MAXN];
void dfs (int u,int fa,int totr,int totb,int pre){
if (u <= n) f[++ cnt] = node {totr,totb,pre};
for (Int i = head[u];i;i = nxt[i]){
int v = to[i];
if (v == fa || vis[i]) continue;
dfs (v,u,totr + (col[i] == 0),totb + (col[i] == 1),1ll * pre * wei[i] % mod);
}
}
int ed,lim,Siz,lena,lenb;
void findedge (int u,int fa){//找重边
siz[u] = 1;
for (Int i = head[u];i;i = nxt[i]){
int v = to[i];
if (v == fa || vis[i]) continue;
findedge (v,u),siz[u] += siz[v];
int tmp = max (siz[v],Siz - siz[v]);
if (tmp < lim) ed = i,lim = tmp;
}
}
bool cmp1 (node a,node b){return 2 * a.B - a.R < 2 * b.B - b.R;}
bool cmp2 (node a,node b){return 2 * a.R - a.B < 2 * b.R - b.B;}
void Solve (int u,int S){
if (S <= 1) return ;
lim = Siz = S,findedge (u,0),vis[ed] = vis[ed ^ 1] = 1;
cnt = 0,f = T1,dfs (to[ed],0,0,0,1),lena = cnt;
cnt = 0,f = T2,dfs (to[ed ^ 1],0,0,0,1),lenb = cnt;
for (Int i = 1;i <= lenb;++ i) T2[i].R += (col[ed] == 0),T2[i].B += (col[ed] == 1),T2[i].dis = 1ll * T2[i].dis * wei[ed] % mod;
sort (T1 + 1,T1 + lena + 1,cmp1);
pres[0] = 1;for (Int i = 1;i <= lena;++ i) pres[i] = 1ll * pres[i - 1] * T1[i].dis % mod;
for (Int i = 1;i <= lenb;++ i){
int now = T2[i].R - 2 * T2[i].B,l = 1,r = lena,fuckans = 0;
while (l <= r){
int mid = (l + r) >> 1;
if (2 * T1[mid].B - T1[mid].R < now) fuckans = mid,l = mid + 1;
else r = mid - 1;
}
ans = 1ll * ans * qkpow (T2[i].dis,fuckans) % mod * pres[fuckans] % mod;
}
sort (T1 + 1,T1 + lena + 1,cmp2);
pres[0] = 1;for (Int i = 1;i <= lena;++ i) pres[i] = 1ll * pres[i - 1] * T1[i].dis % mod;
for (Int i = 1;i <= lenb;++ i){
int now = T2[i].B - 2 * T2[i].R,l = 1,r = lena,fuckans = 0;
while (l <= r){
int mid = (l + r) >> 1;
if (2 * T1[mid].R - T1[mid].B < now) fuckans = mid,l = mid + 1;
else r = mid - 1;
}
ans = 1ll * ans * qkpow (T2[i].dis,fuckans) % mod * pres[fuckans] % mod;
}
int tx = to[ed],ty = to[ed ^ 1];
if (siz[tx] > siz[ty]) siz[tx] = S - siz[ty];
else siz[ty] = S - siz[tx];
Solve (tx,siz[tx]),Solve (ty,siz[ty]);
}
}
int cnt,all = 1,toop = 1,to[MAXN << 1],wei[MAXN << 1],col[MAXN << 1],nxt[MAXN << 1],head[MAXN],las[MAXN],siz[MAXN];
void Add_Edge (int u,int v,int w,int c){
to[++ toop] = v,wei[toop] = w,col[toop] = c,nxt[toop] = head[u],head[u] = toop;
to[++ toop] = u,wei[toop] = w,col[toop] = c,nxt[toop] = head[v],head[v] = toop;
}
void dfs (int u,int fa){
siz[u] = 1;
for (Int i = head[u];i;i = nxt[i]){
int v = to[i],w = wei[i],c = col[i];
if (v == fa) continue;
if (!las[u]) las[u] = u,Graph::Add_Edge (u,v,w,c);
else ++ cnt,Graph::Add_Edge (las[u],cnt,1,-1),Graph::Add_Edge (las[u] = cnt,v,w,c);
dfs (v,u),siz[u] += siz[v],all = 1ll * all * qkpow (w,1ll * siz[v] * (n - siz[v]) % (mod - 1)) % mod;
}
}
signed main(){
read (n),cnt = n;
for (Int i = 2,u,v,w,c;i <= n;++ i) read (u,v,w,c),Add_Edge (u,v,w,c);
dfs (1,0),Graph::Solve (1,cnt),write (1ll * all * inv (ans) % mod),putchar ('\n');
return 0;
}
题解 CF833D Red-Black Cobweb的更多相关文章
- 【CF833D】Red-Black Cobweb(点分治)
[CF833D]Red-Black Cobweb(点分治) 题面 CF 有一棵树,每条边有一个颜色(黑白)和一个权值,定义一条路径是好的,当且仅当这条路径上所有边的黑白颜色个数a,b满足2min(a, ...
- 【CF833D】Red-Black Cobweb
[CF833D]Red-Black Cobweb 题面 洛谷 题解 看到这种统计路径的题目当然是淀粉质啦. 考虑转化一下信息设一条路径上有红点\(a\)个,黑点\(b\)个 则\(2min(a,b)\ ...
- Hdoj 1312.Red and Black 题解
Problem Description There is a rectangular room, covered with square tiles. Each tile is colored eit ...
- CF833D Red-Black Cobweb
题面 题解 点分治大火题... 设白边数量为$a$,黑边为$b$,则$2min(a,b)\geq max(a,b)$ 即$2a\geq b\;\&\&2b\geq a$ 考虑点分治时如 ...
- 题解报告:hdu 1312 Red and Black(简单dfs)
Problem Description There is a rectangular room, covered with square tiles. Each tile is colored eit ...
- poj 1979 Red and Black 题解《挑战程序设计竞赛》
地址 http://poj.org/problem?id=1979 Description There is a rectangular room, covered with square tiles ...
- 【CF1425B】 Blue and Red of Our Faculty! 题解
原题链接 简要翻译: 有一个连通图,A和B同时从点1出发,沿不同的路径前进.原本,图上的每一条边都是灰色的.A将经过的边涂成红色,B将经过的边涂成蓝色的.每个回合每个人只能走灰色的边.当某个回合中不存 ...
- CF833D Red-Black Cobweb 点分治、树状数组
传送门 统计所有路径的边权乘积的乘积,不难想到点分治求解. 边权颜色比例在\([\frac{1}{2},2]\)之间,等价于\(2B \geq R , 2R \geq B\)(\(R,B\)表示红色和 ...
- 洛谷 CF399B【Red and Blue Balls】题解
n年没有更博客:我总结出了规律,当学的东西很难得时候都去学习,没有时间写博客,只有 内容对于我这种蒟蒻友好,又让我非常闲的慌时才写博客,这种博客以后也没有价值(也有些是做完一道题有成就感写的) 最近内 ...
随机推荐
- 乌班图安装redis问题
ot@DESKTOP-5382063:/usr/local/redis/redis-3.0.4# make\ > cd src && make all make[1]: Ente ...
- 使用ECharts绘制网址径向树状图
an.rustfisher.com有很多内容,很多页面.如果用一个树状图把所有页面展示出来会是什么效果? 第一时间想到了ECharts. 最后效果: https://an.rustfisher.com ...
- Ansible部署及配置介绍
原文转自:https://www.cnblogs.com/itzgr/p/10233932.html作者:木二 目录 一 Ansible的安装部署 1.1 PIP方式 1.2 YUM方式 二 Ansi ...
- 磁盘“Seagate”没有被推出,因为一个或多个程序可能正在使用它。
推出移动硬盘失败,解决方案: 执行 lsof /Volumes/Seagate/ 可以看到哪些进程在占用磁盘 $ lsof /Volumes/Seagate/ COMMAND PID USER FD ...
- 从零开始实现简单 RPC 框架 7:网络通信之自定义协议(粘包拆包、编解码)
当 RPC 框架使用 Netty 通信时,实际上是将数据转化成 ByteBuf 的方式进行传输. 那如何转化呢?可不可以把 请求参数 或者 响应结果 直接无脑序列化成 byte 数组发出去? 答:直接 ...
- Python - //和/的区别
/ 表示浮点数除法,返回浮点结果; // 表示整数除法,返回不大于结果的一个最大的整数 print("6 // 4 = " + str(6 // 4)) print("6 ...
- Intel® QAT加速卡之编程demo框架
QAT demo流程框架 示例一: 代码路径:qat1.5.l.1.13.0-19\quickassist\lookaside\access_layer\src\sample_code\functio ...
- 植入式Web前端开发方法
上一篇,我讲述了植入式Web前端开发的基本情况,本篇就来探究其开发方法.以下假定CMS只能植入前端代码,并且需求规模是任意大小的. 代码形式 HTML代码是直接植入的毫无疑问,但除非植入的代码非常简短 ...
- 文件流转换为url
/** * 文件流转换为url * @param {} data //文件流 */ export function getObjectURL(data) { var url = null ...
- netty系列之:在netty中处理CORS
目录 简介 服务端的CORS配置 CorsConfigBuilder CorsHandler netty对cors的支持 总结 简介 CORS的全称是跨域资源共享,他是一个基于HTTP-header检 ...