题意:

小兔的棋盘

Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 6193 Accepted Submission(s): 3373


Problem Description
小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!

Input
每次输入一个数n(1<=n<=35),当n等于-1时结束输入。

Output
对于每个输入数据输出路径数,具体格式看Sample。

Sample Input

1
3
12
-1

Sample Output

1 1 2
2 3 10
3 12 416024



思路:

       简单dp, 因为是求最短,所以当前状态只能由上面或者左面过来(上半部分三角形),由于不能过对角线,我们可以只求一半,也就是上面三角形,最后乘2就行了,直接dp打表,或者记忆化搜索,对于记忆化搜索也可以1边记忆化搜索打表,就是最后在转换矩阵,终点变成了起点,起点变终点什么的,不难,我下面的是dp打表,和直接记忆化搜索的代码,记忆化搜索打表的没写,想写的直接在记忆或搜索的那个改改就行了。


dp

#include<stdio.h>
#include<string.h>

__int64
dp[40][40] = {0}; void solve(int n)
{

dp[1][1] = 1;
for(int
i = 1 ;i <= n ;i ++)
for(int
j = i ;j <= n ;j ++)
{
if(
i == 1 && j == 1) continue;
dp[i][j] = dp[i][j-1] + dp[i-1][j];
}
} int main ()
{
int
n ,cas = 1;
solve(36);
while(~
scanf("%d" ,&n) && n != -1)
{

printf("%d %d %I64d\n" ,cas ++ ,n ,dp[n+1][n+1] * 2);
}
return
0;
}

记忆化搜索


#include<stdio.h>
#include<string.h>

int
mark[40][40];
__int64
dp[40][40];
int
n; __int64 DFS(int x ,int y)
{
if(
x == n + 1 && y == n + 1) return 1;
if(
mark[x][y]) return dp[x][y];
__int64
sum = 0;
if(
x + 1 <= n + 1 && x + 1 <= y)
sum += DFS(x + 1 ,y);
if(
y + 1 <= n + 1)
sum += DFS(x ,y + 1);
mark[x][y] = 1;
dp[x][y] = sum;
return
sum;
} int main ()
{

memset(mark ,0 ,sizeof(mark));
int
cas = 1;
while(
scanf("%d" ,&n) && n != -1)
{

memset(mark ,0 ,sizeof(mark));
printf("%d %d %I64d\n" ,cas ++ ,n ,DFS(1 ,1) * 2);
}
return
0;
}

hdu2067 简单dp或者记忆化搜索的更多相关文章

  1. 蓝桥杯历届试题 地宫取宝 dp or 记忆化搜索

    问题描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走 ...

  2. 【bzoj1415】【聪聪和可可】期望dp(记忆化搜索)+最短路

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=57148470 Descrition 首先很明显是 ...

  3. 二进制数(dp,记忆化搜索)

    二进制数(dp,记忆化搜索) 给定k个<=1e6的正整数x(k不大于10),问最小的,能被x整除且只由01组成的数. 首先,dp很好写.用\(f[i][j]\)表示i位01串,模ki的值是j的数 ...

  4. poj1179 区间dp(记忆化搜索写法)有巨坑!

    http://poj.org/problem?id=1179 Description Polygon is a game for one player that starts on a polygon ...

  5. 非常完整的线性DP及记忆化搜索讲义

    基础概念 我们之前的课程当中接触了最基础的动态规划. 动态规划最重要的就是找到一个状态和状态转移方程. 除此之外,动态规划问题分析中还有一些重要性质,如:重叠子问题.最优子结构.无后效性等. 最优子结 ...

  6. UVA1351-----String Compression-----区间DP(记忆化搜索实现)

    本文出自:http://blog.csdn.net/dr5459 题目地址: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&a ...

  7. 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)

    心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...

  8. 树形DP(记忆化搜索) HYSBZ - 1509

    题目链接:https://vjudge.net/problem/HYSBZ-1509 我参考的证明的论文:8.陈瑜希<多角度思考 创造性思维>_百度文库  https://wenku.ba ...

  9. UVA-10118 Free Candies (DP、记忆化搜索)

    题目大意:有4堆糖果,每堆有n个,有一只最多能容5个糖果的篮子.现在,要把糖果放到篮子里,如果篮子中有相同颜色的糖果,放的人就可以拿到自己的口袋.如果放的人足够聪明,问他最多能得到多少对糖果. 题目分 ...

随机推荐

  1. `vi`——终端中的编辑器

    `vi`--终端中的编辑器 目标* `vi` 简介* 打开和新建文件* 三种工作模式* 常用命令* 分屏命令* 常用命令速查图 01. `vi` 简介 1.1 学习 `vi` 的目的 * 在工作中,要 ...

  2. APICloud Avm.js跨端框架的优势

    AVM(Application-View-Model)是APICloud推出的一个跨端的高性能 JavaScript框架,更趋近于原生的编程体验,它提供简洁的模型来分离应用的用户界面.业务逻辑和数据模 ...

  3. 简单的webRTC连接测试

    webRTC WebRTC (Web Real-Time Communications) 是一项实时通讯技术,它允许网络应用或者站点,在不借助中间媒介的情况下,建立浏览器之间点对点(Peer-to-P ...

  4. Java 虚拟机详解

    深入理解JVM 1   Java技术与Java虚拟机 说起Java,人们首先想到的是Java编程语言,然而事实上,Java是一种技术,它由四方面组成: Java编程语言.Java类文件格式.Java虚 ...

  5. MyBatis中的Map

    接口 int addUserMap(Map<String, Object> map); Mapper.xml <!-- Map比较灵活 传递的值为Map的key,可以为任何(野路子, ...

  6. Python 元类编程实现一个简单的 ORM

    概述 什么是ORM? ORM全称"Object Relational Mapping",即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码 ...

  7. 如何用Flink把数据sink到kafka多个不同(成百上千)topic中

    需求与场景 上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现 ...

  8. 面试被吊打系列 - Redis原理

    小张兴冲冲去面试,结果被面试官吊打! 小张: 面试官,你好.我是来参加面试的. 面试官: 你好,小张.我看了你的简历,熟练掌握Redis,那么我就随便问你几个Redis相关的问题吧.首先我的问题是,R ...

  9. TensorFlow学习(1)-初识

    初识TensorFlow 一.术语潜知 深度学习:深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法. 深度学 ...

  10. python中zip函数的使用

    zip(*iterables) zip可以将多个可迭代对象组合成一个迭代器对象,通过迭代取值,可以得到n个长度为m的元组.其中n为长度最短可迭代对象的元素个数,m为可迭代对象的个数.并且每个元组的第i ...