[SCOI2009]粉刷匠
线性DP预处理+分组背包
首先设dp[i][j][0/1]
表示该木板前i
个格刷了j
次且最后一次颜色为0/1
的最大正确数
做下0/1
的前缀和然后转移状态
dp[i][j][k]=max(dp[l][j][k],dp[l][j-1][k^1])+lis[i][k]-lis[l][k]
然后对每个木板跑分组背包就可以了
#include"cstdio"
#include"cstring"
#include"iostream"
#include"algorithm"
using namespace std;
const int MAXN=55;
const int MAXT=2505;
int n,m,T;
int cnt[MAXN][2];
int dp[MAXN][MAXN][2];
int f[MAXT];
int main()
{
scanf("%d%d%d",&n,&m,&T);
for(int i=1;i<=n;++i){
memset(cnt,0,sizeof(cnt));bool b;
for(int j=1;j<=m;++j){
scanf("%1d",&b);
cnt[j][b]=cnt[j-1][b]+1;
cnt[j][b^1]=cnt[j-1][b^1];
}for(int j=1;j<=m;++j){
for(int k=0;k<j;++k){
for(int l=1;l<=j;++l){
for(int o=0;o<2;++o){
dp[j][l][o]=max(dp[k][l][o],dp[k][l-1][o^1])+cnt[j][o]-cnt[k][o];
}
}
}
}for(int j=T;j;--j){
for(int k=1;k<=min(m,j);++k){
f[j]=max(f[j],f[j-k]+max(dp[m][k][0],dp[m][k][1]));
}
}
}printf("%d\n",f[T]);
return 0;
}
[SCOI2009]粉刷匠的更多相关文章
- BZOJ 1296: [SCOI2009]粉刷匠 分组DP
1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...
- BZOJ 1296: [SCOI2009]粉刷匠( dp )
dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] ) ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...
- 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)
[BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...
- 1296: [SCOI2009]粉刷匠[多重dp]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1919 Solved: 1099[Submit][Statu ...
- 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)
[SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...
- 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠
P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...
- BZOJ_1296_[SCOI2009]粉刷匠_DP
BZOJ_1296_[SCOI2009]粉刷匠_DP Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能 ...
- [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2184 Solved: 1259[Submit][Statu ...
- bzoj1296: [SCOI2009]粉刷匠(DP)
1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...
- Luogu P4158 [SCOI2009]粉刷匠(dp+背包)
P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...
随机推荐
- vue二级路由跳转后外部引入js失效问题解决方案
vue路由可以通过children嵌套,于是可以形成二级路由等等... 案例如下: routes: [ { path: '/', name: 'dy', component: dy, children ...
- String相关练习
1.用代码演示String类中的以下方法的用法 (1)boolean isEmpty(): 判断字符串是不是空串,如果是空的就返回true (2)char charAt(int index): 返回索 ...
- bzoj4998: 星球联盟(link-cut-tree)
题面 bzoj 题解 bzoj2959: 长跑的弱化版 产生了环就并查集维护一下 Code #include<bits/stdc++.h> #define LL long long #de ...
- 蓝桥杯-学霸的迷宫(BFS+记录操作)
算法提高 学霸的迷宫 时间限制:1.0s 内存限制:256.0MB 问题描述 学霸抢走了大家的作业,班长为了帮同学们找回作业,决定去找学霸决斗.但学霸为了不要别人打扰,住在一个城堡 ...
- 物联网学习之路——物联网通信技术:NBIoT
NBIoT是什么 NB-IoT,Narrow Band Internet of Things,窄带物联网,是一种专为万物互联打造的蜂窝网络连接技术.顾名思义,NB-IoT所占用的带宽很窄,只需约180 ...
- Mac下Homebrew的图形化界面工具Cakebrew
安装: brew cask install cakebrew 如果不能下载直接上官网下载dmg包进行安装. 参考: https://www.cakebrew.com/ https://github.c ...
- 关于.NET中FileSystemWatcher的一些不被人注意的细节
.NET 中的FileSystemWatcher可以监控文件系统中的更改.新建.删除和重命名,关于它的事件及属性的讨论有许多,但细节性的具体在什么情况下触发这些事件讨论不多.根据个人测试,总结如下: ...
- 天猫消息盒子的CSS实现
css: body,h2,h3,ul,p{margin:0;padding:0;font-size:12px;} li{list-style: none; } a{text-decoration: n ...
- [问题解决]Fresco设置圆角效果不生效问题探究
[问题解决]Fresco设置圆角效果不生效问题探究 /** * Created by diql on 2017/2/21 11:07:04. */ 问题 在View中设置: fresco:rounde ...
- javac的访问者模式2
(5)Printer /** * A combined type/symbol visitor for generating non-trivial(有意义的) localized string * ...