题面

题解

$$ \frac 1x + \frac 1y = \frac 1{n!} \\ \frac{x+y}{xy}=\frac 1{n!} \\ xy=n!(x+y) \\ xy-n!(x+y)=0 \\ (x-n!)(y-n!)=(n!)^2 \\ $$

因为确定$(x-n!),(y-n!)$就能确定$x,y$,所以答案就是$d((n!)^2)$

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x)) inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int maxn(10000010), Mod(1e9 + 7);
int n, prime[maxn], cnt;
long long c[maxn];
bool not_prime[maxn]; void init()
{
not_prime[1] = true;
for(RG int i = 2; i <= n; i++)
{
if(!not_prime[i]) prime[++cnt] = i;
for(RG int j = 1; j <= cnt && i * prime[j] <= n; j++)
{
not_prime[i * prime[j]] = true;
if(!(i % prime[j])) break;
}
}
} int main()
{
#ifndef ONLINE_JUDGE
file(cpp);
#endif
n = read(); init();
for(RG int i = 1; i <= cnt; i++)
{
int p = prime[i];
for(RG long long j = p; j <= n; j *= p) c[i] += (n / j);
c[i] %= Mod;
}
long long ans = 1;
for(RG int i = 1; i <= cnt; i++) ans = ans * (c[i] << 1 | 1) % Mod;
printf("%lld\n", ans);
return 0;
}

Luogu1445 [Violet]樱花的更多相关文章

  1. Luogu1445 [Violet]樱花 ---- 数论优化

    Luogu1445 [Violet]樱花 一句话题意:(本来就是一句话的) 求方程 $\frac{1}{X} + \frac{1}{Y} = \frac{1}{N!}$ 的正整数解的组数,其中$N \ ...

  2. luogu1445 [violet]樱花 阶乘分解

    题目大意 求方程$$\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$$的正整数解的组数. 思路 咱们把式子整理得$$xy-(x+y)N!=0$$.$xy$和$x+y$?貌似可 ...

  3. bzoj2721 / P1445 [Violet]樱花

    P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax ...

  4. 洛谷P1445 [Violet] 樱花 (数学)

    洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...

  5. 「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论

    题目背景 我很愤怒 题目描述 求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$. 解的组数,应模$1e9+7$. 输入输出格 ...

  6. Luogu P1445[Violet]樱花/P4167 [Violet]樱花

    Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...

  7. luoguP1445 [Violet]樱花

    链接P1445 [Violet]樱花 求方程 \(\frac {1}{X}+\frac {1}{Y}=\frac {1}{N!}\) 的正整数解的组数,其中\(N≤10^6\),模\(10^9+7\) ...

  8. BZOJ2721或洛谷1445 [Violet]樱花

    BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...

  9. Bzoj2721 [Violet]樱花(筛法)

    题面 题解 首先化一下式子 $$ \frac 1x+\frac 1y=\frac 1{n!} \Rightarrow \frac {x+y}{xy}=\frac 1{n!} \Rightarrow ( ...

随机推荐

  1. (转)Win10下PostgreSQL10与PostGIS安装

    版权声明:本文为博主原创文章,欢迎转载. https://blog.csdn.net/LWJ285149763/article/details/79380643 最近在使用矢量数据,因此需要用空间数据 ...

  2. keepalived.md

    配置文件说明 global_defs区域 global_defs { notification_email { acassen@firewall.loc failover@firewall.loc s ...

  3. HTML5旋转立方体

    http://42.121.104.41/templets/default/test1.htm 须要源代码的留言邮箱哈~

  4. P1346 电车

    题目描述 在一个神奇的小镇上有着一个特别的电车网络,它由一些路口和轨道组成,每个路口都连接着若干个轨道,每个轨道都通向一个路口(不排除有的观光轨道转一圈后返回路口的可能).在每个路口,都有一个开关决定 ...

  5. 包不包含__declspec(dllimport)的判定

    按照MSDN说明,当链接dll的导出函数时,只需要包含头文件和lib,__declspec(dllimport)修饰符不是必须的,但加上该修饰能使导出函数的调用效率更高.那么,究竟原因是什么? 不使用 ...

  6. mysql 数据增删改查基本语句

    增: insert insert into 表名(字段1,字段2,字段3......字段N) values(值1,值2,值3): 如果不申明插入那些字段,则默认所有字段. 如果一次可以插入多条数据 可 ...

  7. 4、Spring Cloud-负载均衡 Ribbon

    4.1.RestTemplate 简介 RestTemplate是Spring Resources中一个访问RESTful API 接口的网络请求框架.   RestTemplate 的设计 则和其他 ...

  8. Angular动态表单生成(二)

    ng-dynamic-forms源码分析 在两个开源项目中,ng-dynamic-forms的源码相较于form.io,比较简单,所以我还勉强能看懂,下面就我自己的理解进行简单分析,若有不对的地方,请 ...

  9. SimpleDateFormat 的 format 方法使用具体解释

    Java中怎么才干把日期转换成想要的格式呢.或把字符串转换成一定格式的日期,如把数据库中的日期或时间转换成自己想要的格式,JAVA中提供了SimpleDateFormat类能够实现,下面是Simple ...

  10. C/S模式,发布/订阅模式和PUSH/PULL模式(上)

    CS模式(客户端/服务器模式) 最场景的信息传递模式,也称为Request/Response模式,或者调用模式.http/https协议即此模式.因为最常用所以大家一般都比较熟悉,这里不重点讲了,大家 ...