POJ-1180 Batch Scheduling (分组求最优值+斜率优化)
题目大意:有n个任务,已知做每件任务所需的时间,并且每件任务都对应一个系数fi。现在,要将这n个任务分成若干个连续的组,每分成一个组的代价是完成这组任务所需的总时间加上一个常数S后再乘以这个区间的系数和。求最小代价。
题目分析:分组求最优值得问题。不过,这道题采用倒推可能要好做一些。定义状态dp(i)表示完成从第 i 个任务到第n个任务需要的最小代价,则状态转移方程为
dp(i)=min(dp(j)+(sumt(i)-sumt(j)+s)*sumf(i),很显然的要用斜率优化。
代码如下:
# include<iostream>
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std;
# define LL long long const int INF=1<<30;
const int N=10005; int n,m;
int q[N];
int t[N];
int f[N];
int dp[N]; void read(int &x)
{
char ch=' ';
while(ch<'0'||ch>'9')
ch=getchar();
x=0;
while(ch>='0'&&ch<='9'){
x=x*10+ch-'0';
ch=getchar();
}
} void init()
{
for(int i=0;i<n;++i){
read(t[i]);
read(f[i]);
}
t[n]=f[n]=0;
for(int i=n-1;i>=0;--i){
t[i]+=t[i+1];
f[i]+=f[i+1];
}
} double getK(int i,int j)
{
return (double)(dp[i]-dp[j])/(double)(t[i]-t[j]);
} int toDp(int i,int j)
{
return dp[j]+(t[i]-t[j]+m)*f[i];
} int solve()
{
int head=0,tail=-1;
dp[n]=0;
q[++tail]=n;
for(int i=n-1;i>=0;--i){
while(head+1<=tail&&getK(q[head+1],q[head])<=(double)f[i])
++head;
dp[i]=toDp(i,q[head]);
while(head+1<=tail&&getK(i,q[tail])<=getK(q[tail],q[tail-1]))
--tail;
q[++tail]=i;
}
return dp[0];
} int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
printf("%d\n",solve());
}
return 0;
}
POJ-1180 Batch Scheduling (分组求最优值+斜率优化)的更多相关文章
- POJ 1180 Batch Scheduling(斜率优化DP)
[题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...
- poj 1180 Batch Scheduling (斜率优化)
Batch Scheduling \(solution:\) 这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 \(catstransport\) 的题解了,但还是来回顾一下吧,这道题其实较那 ...
- poj 1180:Batch Scheduling【斜率优化dp】
我会斜率优化了!这篇讲的超级棒https://blog.csdn.net/shiyongyang/article/details/78299894?readlog 首先列个n方递推,设sf是f的前缀和 ...
- POJ 1180 Batch Scheduling
BTW: 刚在图书馆借了本算法艺术与信息学竞赛. 我多次有买这本书的冲动, 但每次在试看之后就放弃了, 倒不是因为书太难, 而是写的实在是太差. 大家对这本书的评价很高, 我觉得多是因为书的内容, 而 ...
- POJ 1180 - Batch Scheduling - [斜率DP]
题目链接:http://poj.org/problem?id=1180 Description There is a sequence of N jobs to be processed on one ...
- POJ 1180 Batch Scheduling (dp,双端队列)
#include <iostream> using namespace std; + ; int S, N; int T[MAX_N], F[MAX_N]; int sum_F[MAX_N ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- POJ1180 Batch Scheduling 解题报告(斜率优化)
题目链接:http://poj.org/problem?id=1180 题目描述: There is a sequence of N jobs to be processed on one machi ...
- [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP
POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...
随机推荐
- centos 网卡名称修改
在centos6.4之前,如果6.2,6.3安装后网卡名称都是em开始,如果想用eth0这种名称,或者是自定义名称,可以参照以下来实施. 第一步:修改/boot/grub/grub.conf增加一个 ...
- ELK学习笔记之ELK架构与介绍
0x00 为什么用到ELK 一般我们需要进行日志分析场景:直接在日志文件中 grep.awk 就可以获得自己想要的信息.但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如何归档.文本搜索太 ...
- Hadoop MapReduce执行过程实例分析
1.MapReduce是如何执行任务的?2.Mapper任务是怎样的一个过程?3.Reduce是如何执行任务的?4.键值对是如何编号的?5.实例,如何计算没见最高气温? 分析MapReduce执行过程 ...
- python集合set{ }、集合函数及集合的交、差、并
通过大括号括起来,用逗号分隔元素,特点 1.由不同元素组成,如果定义时存在相同元素,处理时会自动去重 2.无序 3.元素只能是不可变类型,即数字.字符串.布尔和元组,但集合本身可变 4.可直接定义集合 ...
- JWT(Json web token)认证详解
JWT(Json web token)认证详解 什么是JWT Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准((RFC 7519).该to ...
- ESOURCE_LOCKED - cannot obtain exclusive access to locked queue '2484_0_00163'
早上一运维同事说,一个报盘程序启动的时候报了"ESOURCE_LOCKED - cannot obtain exclusive access to locked queue '2484_0_ ...
- 20145334赵文豪《网络对抗》-逆向及Bof基础实践
本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. 该程序同时包含另一个代码片段,getShell,会返 ...
- 20145221高其_PC平台逆向破解_advanced
20145221高其_PC平台逆向破解_advanced 实践目录 shellcode注入 Return-to-libc 攻击实验 shellcode注入 概述 Shellcode实际是一段代码(也可 ...
- 关于STM32 MDK中USE_STDPERIPH_DRIVER问题的解释
初学STM32,在RealView MDK 环境中使用STM32固件库建立工程时,初学者可能会遇到编译不通过的问题.出现如下警告或错误提示: warning: #223-D: function &qu ...
- Linux驱动模块的Makefile分析【转】
本文转载自:http://blog.chinaunix.net/uid-29307109-id-3993784.html 1. 获取内核版本 当设备驱动需要同时支持不同版本内核时,在编译阶段,内核模块 ...