POJ-1180 Batch Scheduling (分组求最优值+斜率优化)
题目大意:有n个任务,已知做每件任务所需的时间,并且每件任务都对应一个系数fi。现在,要将这n个任务分成若干个连续的组,每分成一个组的代价是完成这组任务所需的总时间加上一个常数S后再乘以这个区间的系数和。求最小代价。
题目分析:分组求最优值得问题。不过,这道题采用倒推可能要好做一些。定义状态dp(i)表示完成从第 i 个任务到第n个任务需要的最小代价,则状态转移方程为
dp(i)=min(dp(j)+(sumt(i)-sumt(j)+s)*sumf(i),很显然的要用斜率优化。
代码如下:
# include<iostream>
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std;
# define LL long long const int INF=1<<30;
const int N=10005; int n,m;
int q[N];
int t[N];
int f[N];
int dp[N]; void read(int &x)
{
char ch=' ';
while(ch<'0'||ch>'9')
ch=getchar();
x=0;
while(ch>='0'&&ch<='9'){
x=x*10+ch-'0';
ch=getchar();
}
} void init()
{
for(int i=0;i<n;++i){
read(t[i]);
read(f[i]);
}
t[n]=f[n]=0;
for(int i=n-1;i>=0;--i){
t[i]+=t[i+1];
f[i]+=f[i+1];
}
} double getK(int i,int j)
{
return (double)(dp[i]-dp[j])/(double)(t[i]-t[j]);
} int toDp(int i,int j)
{
return dp[j]+(t[i]-t[j]+m)*f[i];
} int solve()
{
int head=0,tail=-1;
dp[n]=0;
q[++tail]=n;
for(int i=n-1;i>=0;--i){
while(head+1<=tail&&getK(q[head+1],q[head])<=(double)f[i])
++head;
dp[i]=toDp(i,q[head]);
while(head+1<=tail&&getK(i,q[tail])<=getK(q[tail],q[tail-1]))
--tail;
q[++tail]=i;
}
return dp[0];
} int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
printf("%d\n",solve());
}
return 0;
}
POJ-1180 Batch Scheduling (分组求最优值+斜率优化)的更多相关文章
- POJ 1180 Batch Scheduling(斜率优化DP)
[题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...
- poj 1180 Batch Scheduling (斜率优化)
Batch Scheduling \(solution:\) 这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 \(catstransport\) 的题解了,但还是来回顾一下吧,这道题其实较那 ...
- poj 1180:Batch Scheduling【斜率优化dp】
我会斜率优化了!这篇讲的超级棒https://blog.csdn.net/shiyongyang/article/details/78299894?readlog 首先列个n方递推,设sf是f的前缀和 ...
- POJ 1180 Batch Scheduling
BTW: 刚在图书馆借了本算法艺术与信息学竞赛. 我多次有买这本书的冲动, 但每次在试看之后就放弃了, 倒不是因为书太难, 而是写的实在是太差. 大家对这本书的评价很高, 我觉得多是因为书的内容, 而 ...
- POJ 1180 - Batch Scheduling - [斜率DP]
题目链接:http://poj.org/problem?id=1180 Description There is a sequence of N jobs to be processed on one ...
- POJ 1180 Batch Scheduling (dp,双端队列)
#include <iostream> using namespace std; + ; int S, N; int T[MAX_N], F[MAX_N]; int sum_F[MAX_N ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- POJ1180 Batch Scheduling 解题报告(斜率优化)
题目链接:http://poj.org/problem?id=1180 题目描述: There is a sequence of N jobs to be processed on one machi ...
- [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP
POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...
随机推荐
- php array 根据value获取key,in_array()判断是否在数组内实例
php array 根据value获取key,in_array()判断是否在数组内实例 <?php header("Content-type: text/html; charset=u ...
- sp3485推荐电路(转)
源: sp3485推荐电路 注意:转自电子发烧友 转:485通信自动收发电路 转: RS485收发的3种典型电路-重点-自动收发电路
- Django popup示例
urls.py urlpatterns = [ url('popup_test1',views.popup_test1), url('popup_test2',views.popup_test2), ...
- Python3 打开 https 链接,异常:“SSL: CERTIFICATE_VERIFY_FAILED”
Python3 打开 https 链接,异常:“SSL: CERTIFICATE_VERIFY_FAILED” 一.问题 Python2.7.9 之后,当使用urllib.urlopen打开一个 ht ...
- 20145332 《网络攻防》 逆向与Bof实验
20145332 <网络攻防>逆向与Bof实验 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用 ...
- HDU 1358 Period(KMP+最小循环节)题解
思路: 这里只要注意一点,就是失配值和前后缀匹配值的区别,不懂的可以看看这里,这题因为对子串也要判定,所以用前后缀匹配值,其他的按照最小循环节做 代码: #include<iostream> ...
- HDU 6171 Admiral(双向BFS+队列)题解
思路: 最大步骤有20,直接BFS会超时. 因为知道开始情况和结果所以可以用双向BFS,每个BFS规定最大步骤为10,这样相加肯定小于20.这里要保存每个状态搜索到的最小步骤,用Hash储存.当发现现 ...
- ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer 最大生成树 lca
大概就是要每两个点 只能有一条路径,并且约束,最短的边用来砌墙,那么反之的意思就是最大的边用来穿过 故最大生成树 生成以后 再用lca计算树上两点间的距离 (当然防止生成树是一条链,可以用树的重心作为 ...
- Java 类引入 学习记录规整
之前觉得声明一个类,再把另一个包内的声明数值用第一个类打印出来就可以了(加入引入包类) 结果发现是不对的 看了看demo 得出正确结果 ImportTest 被运行 引入下面的Import类 ...
- java自学入门心得体会 0.1
之前记录了java的简介和基本语法 这里记载下对象和类 不太懂的我理解java对象和类的概念很模糊,因为有了 Abstract修饰符 让对象与类更加的扑朔迷离 - - 所以,就像很开放的语言,创建对象 ...