斐波那契数列的5种python写法

      斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)

斐波那契数列,难点在于算法,还有如果变成生成器,generator,就要用for循环去遍历可迭代的generator

第一种 递归法

def fib_recur(n):
assert n >= 0, "n > 0"
if n <= 1:
return n
return fib_recur(n-1) + fib_recur(n-2) for i in range(1, 20):
print(fib_recur(i), end=' ')

写法最简洁,但是效率最低,会出现大量的重复计算,时间复杂度O(1.618^n),而且最深度1000

第二种 递推法

def fib_loop(n):
a, b = 1, 1
while n > 0:
a, b = b, a + b
n -= 1
return a for i in range(20):
print(fib_loop(i), end=' ')

递推法,就是递增法,时间复杂度是 O(n),呈线性增长,如果数据量巨大,速度会越拖越慢

第三种 生成器

def fib_loop_while(max):
a, b = 0, 1
while max > 0:
a, b = b, a + b
max -= 1
yield a for i in fib_loop_while(10):
print(i)

带有yield的函数都被看成生成器,生成器是可迭代对象,且具备__iter__ 和 __next__方法, 可以遍历获取元素

python要求迭代器本身也是可迭代的,所以我们还要为迭代器实现__iter__方法,而__iter__方法要返回一个迭代器,迭代器自身正是一个迭代器,所以迭代器的__iter__方法返回自身即可

第四种 类实现内部魔法方法

class Fibonacci(object):
"""斐波那契数列迭代器""" def __init__(self, n):
"""
:param n:int 指 生成数列的个数
"""
self.n = n
# 保存当前生成到的数据列的第几个数据,生成器中性质,记录位置,下一个位置的数据
self.current = 0
# 两个初始值
self.a = 0
self.b = 1 def __next__(self):
"""当使用next()函数调用时,就会获取下一个数"""
if self.current < self.n:
self.a, self.b = self.b, self.a + self.b
self.current += 1
return self.a
else:
raise StopIteration def __iter__(self):
"""迭代器的__iter__ 返回自身即可"""
return self if __name__ == '__main__':
fib = Fibonacci(15)
for num in fib:
print(num)
for循环的本质是通过不断调用next()函数实现的
    for x in [1, 2, 3, 4, 5]:
pass

相当于:

    # 首先获取可迭代对象
it = iter([1, 2, 3, 4, 5])
# while next
while True:
try:
next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break

第五种 矩阵快速幂

import numpy as np

### 1
def fib_matrix(n):
for i in range(n):
res = pow((np.matrix([[1, 1], [1, 0]], dtype='int64')), i) * np.matrix([[1], [0]])
print(int(res[0][0])) # 调用
> fib_matrix(50) ### 2
# 使用矩阵计算斐波那契数列
def Fibonacci_Matrix_tool(n):
Matrix = np.matrix("1 1;1 0", dtype='int64')
# 返回是matrix类型
return np.linalg.matrix_power(Matrix, n) def Fibonacci_Matrix(n):
result_list = []
for i in range(0, n):
result_list.append(np.array(Fibonacci_Matrix_tool(i))[0][0])
return result_list # 调用
> Fibonacci_Matrix(50) ### pow 速度 比 双**号快, np.linalg.matrix_power也是一种方法

因为幂运算可以使用二分加速,所以矩阵法的时间复杂度为 O(log n)

用科学计算包numpy来实现矩阵法 O(log n)

斐波那契数列的5种python实现写法的更多相关文章

  1. Python中斐波那契数列的四种写法

    在这些时候,我可以附和着笑,项目经理是决不责备的.而且项目经理见了孔乙己,也每每这样问他,引人发笑.孔乙己自己知道不能和他们谈天,便只好向新人说话.有一回对我说道,“你学过数据结构吗?”我略略点一点头 ...

  2. 斐波那契数列的三种C++实现及时间复杂度分析

    本文介绍了斐波那契数列的三种C++实现并详细地分析了时间复杂度. 斐波那契数列定义:F(1)=1, F(2)=1, F(n)=F(n-1) + F(n-2) (n>2) 如何计算斐波那契数 F( ...

  3. 实现斐波拉契数列的四种方式python代码

    斐波那契数列 1. 斐波拉契数列简介 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引 ...

  4. Fibonacci series(斐波纳契数列)的几种常见实现方式

    费波那契数列的定义: 费波那契数列(意大利语:Successione di Fibonacci),又译费波拿契数.斐波那契数列.斐波那契数列.黄金切割数列. 在数学上,费波那契数列是以递归的方法来定义 ...

  5. JS实现斐波那契数列的五种方式

    下面是五种实现斐波那契数列的方法 循环   function fibonacci(n){ var res1 = 1; var res2 = 1; var sum = res2; for(var i = ...

  6. 斐波那契数列 的两种实现方式(Java)

    import java.util.Scanner; /* 斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n ...

  7. 方法输出C++输出斐波那契数列的几种方法

    PS:今天上午,非常郁闷,有很多简单基础的问题搞得我有些迷茫,哎,代码几天不写就忘.目前又不当COO,还是得用心记代码哦! 定义: 斐波那契数列指的是这样一个数列:0, 1, 1, 2, 3, 5, ...

  8. C++输出斐波那契数列的几种方法

    定义: 斐波那契数列指的是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 这个数列从第三项开始,每一项都等于前两项之和. 以输出斐波那 ...

  9. JS写斐波那契数列的几种方法

    斐波那契数,指的是这样一个数列:1.1.2.3.5.8.13.21.……在数学上,斐波那契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字 ...

随机推荐

  1. Myeclise下tomcat启动报错,启动超时

    错误截图如下: 大概说的是tomcat7在本地不能在45秒内启动,如果项目需要更多的时间,试着去更改server配置 解决方法: 找到项目工作空间目录下 workspace\.metadata\.pl ...

  2. 你的centos/linux下有多个php.ini,不确定是哪个时

    你的centos/linux下有多个php.ini,不确定是哪个时,但是你自己知道,你的php安装目录. 比如我的php安装目录是 /usr/local/php 那么可以通过命令来查找php.ini的 ...

  3. 新概念 Lesson 2 Sorry, sir.

    Is this your handbag? 这是你的手提包吗? Yes,it is. /No it isn't 人称代词的主格宾格 形容性物主代词的用法 Does the man get his um ...

  4. LeetCode--053--最大子序和

    问题描述: 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: ...

  5. hdu 6395 Sequence (简单矩乘)

    P/n大多数情况是不变的, 取值只有$O(\sqrt{P})$种, 可以用$p/(p/i)$跳过重复的值, 复杂度$O(logn\sqrt{P})$ 要注意 P跟模数P有冲突 要特判p/i==0和p/ ...

  6. ssh The authenticity of host '10.11.26.2 (10.11.26.2)' can't be established

    The authenticity of host '10.11.26.2 (10.11.26.2)' can't be established. ECDSA key fingerprint is SH ...

  7. Form嵌入到Panel里(C#)

    直接把这个 Form嵌入到一个 Panel中即可. 示例如下: 要嵌入的 Form: public partial class FormEmbed : Form { public FormEmbed( ...

  8. eclipse properties 文件查看和编辑插件 Properties Editor

    Properties Edito官网地址:http://propedit.sourceforge.jp/index_en.html Properties Edito安装地址:http://proped ...

  9. 对mysql性能影响的几个重要参数---高性能(七)

    转载地址:https://wenku.baidu.com/view/f6bd760cb307e87101f696e3.html

  10. ShiroFilterFactoryBean 处理拦截资源文件问题(Shiro权限管理)

    一.需要定义ShiroFilterFactoryBean()方法,而ShiroFilterFactoryBean.class是实现了FactoryBean和BeanPostProcessor接口: 1 ...