hdu6390GuGuFishtion【数论】
GuGuFishtion
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1204 Accepted Submission(s): 459
Problem Description
Today XianYu is too busy with his homework, but the boring GuGu is still disturbing him!!!!!!
At the break time, an evil idea arises in XianYu's mind.
‘Come on, you xxxxxxx little guy.’
‘I will give you a function ϕ(x) which counts the positive integers up to x that are relatively prime to x.’
‘And now I give you a fishtion, which named GuGu Fishtion, in memory of a great guy named XianYu and a disturbing and pitiful guy GuGu who will be cooked without solving my problem in 5 hours.’
‘The given fishtion is defined as follow:
Gu(a,b)=ϕ(ab)ϕ(a)ϕ(b)
And now you, the xxxxxxx little guy, have to solve the problem below given m,n,p.’
(∑a=1m∑b=1nGu(a,b))(modp)
So SMART and KINDHEARTED you are, so could you please help GuGu to solve this problem?
‘GU GU!’ GuGu thanks.
Input
Input contains an integer T indicating the number of cases, followed by T lines. Each line contains three integers m,n,p as described above.
1≤T≤3
1≤m,n≤1,000,000
max(m,n)<p≤1,000,000,007
And given p is a prime.
Output
Please output exactly T lines and each line contains only one integer representing the answer.
Sample Input
1 5 7 23
Sample Output
2
Source
2018 Multi-University Training Contest 7
Recommend
chendu | We have carefully selected several similar problems for you: 6408 6407 6406 6405 6404
先去学习了一下欧拉函数
这道题根据欧拉函数的定义化简可以得到
因此对于题目要求的
我们需要先计算每一个i/φ(i)的值, 再计算gcd() = i的数对的数目
先预处理出所有的φi
对于一个数i,在a∈[1,n],b∈[1,m]a∈[1,n],b∈[1,m]的范围内,设f[i]为gcd为(i,2i,3i...)的对数设f[i]为gcd为(i,2i,3i...)的对数
显然 : f[i]=[n/i]∗[m/i]f[i]=[n/i]∗[m/i]
那么我们从大到小维护f[i]f[i],因为我们要的是 gcd=igcd=i 的对数,所以要把 gcd=2igcd=2i 的情况减去【预处理】
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#define inf 1e18
using namespace std;
int t, n, m;
const int maxn = 1000005;
long long f[maxn], a[maxn], p;
long long cnt[maxn];
long long is[maxn], phi[maxn], pri[maxn], nump;
/*
特性 :
1.若a为质数,phi[a]=a-1;
2.若a为质数,b mod a=0,phi[a*b]=phi[b]*a
3.若a,b互质,phi[a*b]=phi[a]*phi[b](当a为质数时,if b mod a!=0 ,phi[a*b]=phi[a]*phi[b])
*/
void make()
{
memset(phi, 0, sizeof(phi));
memset(f, 0, sizeof(f));
phi[1] = 1;
for(int i = 2; i <= maxn; i++){
if(!is[i]){//i是素数
pri[++nump] = i;
phi[i] = i - 1;
}
for(int j = 1; j <= nump && pri[j] * i < maxn; j++){//筛
is[pri[j] * i] = 1;
if(i % pri[j] == 0){
phi[pri[j] * i] = phi[i] * pri[j];
break;
}
else phi[pri[j] * i] = phi[i] *(pri[j] - 1);
}
}
cnt[1] = 1;
for(int i = 1; i < maxn; i++){
for(int j = 2 * i; j < maxn; j += i){
cnt[j] -= cnt[i];
}
}
}
void deal()
{
f[1] = 1;
for(int i = 2; i <= min(n, m); i++)
f[i] = f[p % i] * (p - p / i) % p;
for(int i = 1; i <= min(n, m); i++){
a[i] = (long long)i * f[phi[i]] % p;
}
}
long long get(int n, int m)
{
long long ans = 0;
for(int i = 1; i <= min(n, m); i++){
ans+= (long long ) cnt[i] * (n / i) * (m / i);
ans %= p;
}
return ans;
}
int main()
{
make();
cin>>t;
while(t--){
scanf("%d%d%lld", &m, &n, &p);
deal();
long long ans = 0;
for(int i = 1; i <= min(n, m); i++){
ans += (long long )a[i] * get(n / i, m / i);
ans %= p;
}
printf("%lld\n", ans);
}
return 0;
}
hdu6390GuGuFishtion【数论】的更多相关文章
- Codeforces Round #382 Div. 2【数论】
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...
- NOIP2014 uoj20解方程 数论(同余)
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...
- 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)
~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- bzoj2219: 数论之神
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- hdu5072 Coprime (2014鞍山区域赛C题)(数论)
http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出N个数,求有多少个三元组,满足三个数全部两两互质或全部两两不互质. 题解: http://dty ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- 数论初步(费马小定理) - Happy 2004
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...
随机推荐
- Wcf使用Net.Tcp做回调操作
契约: [ServiceContract(Namespace = "http://Microsoft.ServiceModel.Samples", SessionMode = Se ...
- [转]Tomcat的部署
1.1 Context descriptors Tomcat4中的Manager和Admin管理工具其实就是利用它来部署的.在Tomcat5中提出了Context descriptor这个概念,且为其 ...
- mysql强制使用索引
在公司后台某模块功能记录日志中有一个搜索功能,通过前段时间的产品使用时间区间进行搜索反馈有些卡顿,我发现这个搜索功能比较慢,要3秒左右才能出来,就决定对这里做一下优化. 通过分析代码和SQL发现最核心 ...
- CallByValue和CallByName区别
/** * Created by root * Description :CallByValue:进入函数就得先计算实参的值:CallByName:函数体重使用到的时候才计算 */ object Ca ...
- >>和<<<区别
1.>>表示右移(有符号右移),如:15>>2的结果是3,-31>>3的结果是-4,左边以该数的符号位补充,移出的部分将被抛弃. 转为二进制的形式可能更好理解(省略 ...
- Python学习--字符串slicing
Found this great table at http://wiki.python.org/moin/MovingToPythonFromOtherLanguages Python indexe ...
- [Ubuntu] 解决 pip 安装 lxml 出现 x86_64-linux-gnu-gcc 异常
安装 pip : $ wget https://bootstrap.pypa.io/get-pip.py ... $ sudo python get-pip.py install 使用 pip 安装/ ...
- ubuntu MySQL采用apt-get install安装目录
一). ubuntu下mysql安装布局: /usr/bin 客户端程序和mysql_install_db /var/lib/mysql ...
- 关于MFLAGS与MAKEFLAGS
与子make通讯的选项 诸如‘-s’和‘-k’标志通过变量MAKEFLAGS自动传递给子make.该变量由make自动建立,并包含make收到的标志字母.所以,如果您是用‘make –ks’变量MAK ...
- 浅析JavaBean
一.概述 JavaBean组件本质上是一个Java类,只是这个类的编码要遵循一些约定.用户可以使用JavaBean将功能.处理.值.数据库访问和其他任何可以用java代码创造的对象进行打包,并且其他的 ...