Spark集群之yarn提交作业优化案例

                            作者:尹正杰

版权声明:原创作品,谢绝转载!否则将追究法律责任。

一.启动Hadoop集群

1>.自定义批量管理脚本

[yinzhengjie@s101 ~]$ more `which xzk.sh`
#!/bin/bash
#@author :yinzhengjie
#blog:http://www.cnblogs.com/yinzhengjie
#EMAIL:y1053419035@qq.com #判断用户是否传参
if [ $# -ne ];then
echo "无效参数,用法为: $0 {start|stop|restart|status}"
exit
fi #获取用户输入的命令
cmd=$ #定义函数功能
function zookeeperManger(){
case $cmd in
start)
echo "启动服务"
remoteExecution start
;;
stop)
echo "停止服务"
remoteExecution stop
;;
restart)
echo "重启服务"
remoteExecution restart
;;
status)
echo "查看状态"
remoteExecution status
;;
*)
echo "无效参数,用法为: $0 {start|stop|restart|status}"
;;
esac
} #定义执行的命令
function remoteExecution(){
for (( i= ; i<= ; i++ )) ; do
tput setaf
echo ========== s$i zkServer.sh $ ================
tput setaf
ssh s$i "source /etc/profile ; zkServer.sh $1"
done
} #调用函数
zookeeperManger
[yinzhengjie@s101 ~]$

[yinzhengjie@s101 ~]$ more `which xzk.sh` (zookeeper集群管理脚本)

[yinzhengjie@s101 ~]$ more `which xcall.sh`
#!/bin/bash
#@author :yinzhengjie
#blog:http://www.cnblogs.com/yinzhengjie
#EMAIL:y1053419035@qq.com #判断用户是否传参
if [ $# -lt ];then
echo "请输入参数"
exit
fi #获取用户输入的命令
cmd=$@ for (( i=;i<=;i++ ))
do
#使终端变绿色
tput setaf
echo ============= s$i $cmd ============
#使终端变回原来的颜色,即白灰色
tput setaf
#远程执行命令
ssh s$i $cmd
#判断命令是否执行成功
if [ $? == ];then
echo "命令执行成功"
fi
done
[yinzhengjie@s101 ~]$

[yinzhengjie@s101 ~]$ more `which xcall.sh` (批量执行命令的脚本)

2>.启动zookeeper集群

[yinzhengjie@s101 ~]$ xzk.sh start
启动服务
========== s102 zkServer.sh start ================
ZooKeeper JMX enabled by default
Using config: /soft/zk/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
========== s103 zkServer.sh start ================
ZooKeeper JMX enabled by default
Using config: /soft/zk/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
========== s104 zkServer.sh start ================
ZooKeeper JMX enabled by default
Using config: /soft/zk/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[yinzhengjie@s101 ~]$

3>.启动hdfs分布式文件系统

[yinzhengjie@s101 ~]$ start-dfs.sh
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7./share/hadoop/common/lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.-bin/lib/log4j-slf4j-impl-2.4..jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Starting namenodes on [s101 s105]
s101: starting namenode, logging to /soft/hadoop-2.7./logs/hadoop-yinzhengjie-namenode-s101.out
s105: starting namenode, logging to /soft/hadoop-2.7./logs/hadoop-yinzhengjie-namenode-s105.out
s102: starting datanode, logging to /soft/hadoop-2.7./logs/hadoop-yinzhengjie-datanode-s102.out
s103: starting datanode, logging to /soft/hadoop-2.7./logs/hadoop-yinzhengjie-datanode-s103.out
s104: starting datanode, logging to /soft/hadoop-2.7./logs/hadoop-yinzhengjie-datanode-s104.out
Starting journal nodes [s102 s103 s104]
s102: starting journalnode, logging to /soft/hadoop-2.7./logs/hadoop-yinzhengjie-journalnode-s102.out
s104: starting journalnode, logging to /soft/hadoop-2.7./logs/hadoop-yinzhengjie-journalnode-s104.out
s103: starting journalnode, logging to /soft/hadoop-2.7./logs/hadoop-yinzhengjie-journalnode-s103.out
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7./share/hadoop/common/lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.-bin/lib/log4j-slf4j-impl-2.4..jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Starting ZK Failover Controllers on NN hosts [s101 s105]
s101: starting zkfc, logging to /soft/hadoop-2.7./logs/hadoop-yinzhengjie-zkfc-s101.out
s105: starting zkfc, logging to /soft/hadoop-2.7./logs/hadoop-yinzhengjie-zkfc-s105.out
[yinzhengjie@s101 ~]$

4>.启动yarn集群

[yinzhengjie@s101 ~]$ start-yarn.sh
starting yarn daemons
s101: starting resourcemanager, logging to /soft/hadoop-2.7./logs/yarn-yinzhengjie-resourcemanager-s101.out
s105: starting resourcemanager, logging to /soft/hadoop-2.7./logs/yarn-yinzhengjie-resourcemanager-s105.out
s102: starting nodemanager, logging to /soft/hadoop-2.7./logs/yarn-yinzhengjie-nodemanager-s102.out
s104: starting nodemanager, logging to /soft/hadoop-2.7./logs/yarn-yinzhengjie-nodemanager-s104.out
s103: starting nodemanager, logging to /soft/hadoop-2.7./logs/yarn-yinzhengjie-nodemanager-s103.out
[yinzhengjie@s101 ~]$

5>.查看集群是否启动成功

[yinzhengjie@s101 ~]$ xcall.sh jps
============= s101 jps ============
ResourceManager
NameNode
DFSZKFailoverController
Jps
命令执行成功
============= s102 jps ============
JournalNode
DataNode
QuorumPeerMain
NodeManager
Jps
命令执行成功
============= s103 jps ============
Jps
QuorumPeerMain
JournalNode
DataNode
NodeManager
命令执行成功
============= s104 jps ============
DataNode
QuorumPeerMain
NodeManager
Jps
JournalNode
命令执行成功
============= s105 jps ============
Jps
NameNode
DFSZKFailoverController
命令执行成功
[yinzhengjie@s101 ~]$

  检查WebUI是否正常打开:

二.Spark集群的运行模式

1>.local

  本地模式,不需要启动任何进程.使用jvm多个线程模拟worker。

2>.standalone

  独立模式,master + worker,启动方式:spark-submit --master spark://s101:7077

3>.yarn

  不需要启动任务spark进程,不需要安装spark集群,启动方式如:spark-submit --master yarn | yarn-client | yarn-cluster

.yarn-client
  driver运行在client,appmaster只负责请求资源列表。 .yarn-cluster
appmaster除了请求资源列表之外,还要运行driver程序。

三.使用yarn操作步骤

  我们需要停止spark集群,只需要安装Spark软件并且启动hadoop集群即可。

四.优化yarn集群配置案例

Spark集群之yarn提交作业优化案例的更多相关文章

  1. Spark集群的任务提交执行流程

    本文转自:https://www.linuxidc.com/Linux/2018-02/150886.htm 一.Spark on Standalone 1.spark集群启动后,Worker向Mas ...

  2. Spark集群安装和WordCount编写

    一.Spark概述 官网:http://spark.apache.org/ Apache Spark™是用于大规模数据处理的统一分析引擎. 为大数据处理而设计的快速通用的计算引擎. Spark加州大学 ...

  3. spark集群启动步骤及web ui查看

    集群启动步骤:先启动HDFS系统,在启动spark集群,最后提交jar到spark集群执行. 1.hadoop启动cd /home/***/hadoop-2.7.4/sbinstart-all.sh ...

  4. Spark集群模式&Spark程序提交

    Spark集群模式&Spark程序提交 1. 集群管理器 Spark当前支持三种集群管理方式 Standalone-Spark自带的一种集群管理方式,易于构建集群. Apache Mesos- ...

  5. 向Spark集群提交任务

    1.启动spark集群. 启动Hadoop集群 cd /usr/local/hadoop/ sbin/start-all.sh 启动Spark的Master节点和所有slaves节点 cd /usr/ ...

  6. Spark集群搭建(local、standalone、yarn)

    Spark集群搭建 local本地模式 下载安装包解压即可使用,测试(2.2版本)./bin/spark-submit --class org.apache.spark.examples.SparkP ...

  7. Spark 集群 任务提交模式

    Spark 集群的模式及提交任务的方式 本文大致的内容图 Spark 集群的两种模式: Standalone 模式 Standalone-client 任务提交方式 提交命令 ./spark-subm ...

  8. Docker中提交任务到Spark集群

    1.  背景描述和需求 数据分析程序部署在Docker中,有一些分析计算需要使用Spark计算,需要把任务提交到Spark集群计算. 接收程序部署在Docker中,主机不在Hadoop集群上.与Spa ...

  9. 大数据学习day18----第三阶段spark01--------0.前言(分布式运算框架的核心思想,MR与Spark的比较,spark可以怎么运行,spark提交到spark集群的方式)1. spark(standalone模式)的安装 2. Spark各个角色的功能 3.SparkShell的使用,spark编程入门(wordcount案例)

    0.前言 0.1  分布式运算框架的核心思想(此处以MR运行在yarn上为例)  提交job时,resourcemanager(图中写成了master)会根据数据的量以及工作的复杂度,解析工作量,从而 ...

随机推荐

  1. 《Linux内核分析》第七周: 可执行程序的装载

    LINUX内核分析第七周学习总结--可执行程序的装载 杨舒雯(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course/ ...

  2. Github以及推广

    非常抱歉,我忘记在这个博客上发一遍了,之前是我同学代发,而我忘记把链接给发过来... Github: http://www.cnblogs.com/case1/p/5060015.html 推广: h ...

  3. 携程Apollo配置中心架构深度剖析

    转自:http://www.uml.org.cn/wfw/201808153.asp 一.介绍 Apollo(阿波罗)[参考附录]是携程框架部研发并开源的一款生产级的配置中心产品,它能够集中管理应用在 ...

  4. [wiki]陶德曼调停

    陶德曼调停[编辑] 维基百科,自由的百科全书 凯申物流差点和谈 目录 1背景 2调停经过 3评价 4参见 背景[编辑] 主条目:中德合作 (1911年-1941年) 1936年11月25日,德国与日本 ...

  5. React componentDidMount

    <!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...

  6. ubuntu16安装MySQL

    MySQL 是一种开源数据库管理系统,通常作为流行的LAMP(Linux,Apache,MySQL,PHP / Python / Perl)堆栈的一部分安装.它使用关系数据库和SQL(结构化查询语言) ...

  7. (转)poj算法做题顺序

    初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. (5)构造法.(poj329 ...

  8. 掌握 MySQL 这 19 个骚操作,效率至少提高3倍

    本文我们来谈谈项目中常用的MySQL优化方法,共19条,利用好这19条方法,会让你的效率提升至少3倍. 1.EXPLAIN 做MySQL优化,我们要善用EXPLAIN查看SQL执行计划. 下面来个简单 ...

  9. 【BZOJ2003】[HNOI2010]矩阵(搜索)

    [BZOJ2003][HNOI2010]矩阵(搜索) 题面 懒得粘了,不难找吧. 题解 看的学长写的题解,也懒得写了 大概是这样的. 不难发现只需要确定第一行和第一列就能确定答案,而确定第一行之后每确 ...

  10. 批量修改SharePoint2013 备用语言

    cls [System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SharePoint") foreach ($we ...