LOJ6671 EntropyIncreaser 与 Minecraft (生成函数)
题面
EntropyIncreaser 是组合计数大师。
EntropyIncreaser 很喜欢玩麦块。当然,EntropyIncreaser 拥有非同常人的超能力,他玩的是MOD版的 n 维麦块,换成数学语言也就是
Z
n
\mathbb{Z}^n
Zn 空间。他现在手里有一个特制的
T
N
T
\tt TNT
TNT方块:若将它放在
(
x
1
,
x
2
,
…
,
x
n
)
(x_1,x_2,…,x_n)
(x1,x2,…,xn)(注意
x
i
x_i
xi 可能为负数)处,它将拥有
∑
i
=
1
n
∣
x
i
∣
∑_{i=1}^n|x_i|
∑i=1n∣xi∣ 的威力值。EntropyIncreaser 只是想看看这种特制
T
N
T
\tt TNT
TNT的爆炸场面,他并不希望对其他东西造成太大的损害,所以这个
T
N
T
\tt TNT
TNT方块的威力值必须
⩽
p
⩽p
⩽p 。
EntropyIncreaser 想请你告诉他,一共有多少不同的位置放置
T
N
T
\tt TNT
TNT,使其满足他的要求。答案对
1
0
9
+
7
10^9+7
109+7 取模。
EntropyIncreaser 想了一秒就知道了答案。但他决定还是考考你。
Sample Input
3 5
Sample Output
231
题解
决定了!就用生成函数表达对这道题的尊敬!
其实这道题是可以当作生成函数入门训练题的。
我们对每一维坐标的绝对值进行考虑,若
∣
x
i
∣
≠
0
|x_i|\not=0
∣xi∣=0 那么有正负两种情况,贡献为 2,若为 0,则只有一种情况,贡献为 1 。
因此,单个维度贡献的生成函数就是
f
(
x
)
=
1
+
2
x
+
2
x
2
+
.
.
.
=
2
x
−
1
−
1
f(x)=1+2x+2x^2+...=\frac{2}{x-1}-1
f(x)=1+2x+2x2+...=x−12−1
继续推下去吧! 我们可以得到总答案关于威力值的生成函数
F
(
x
)
=
f
n
(
x
)
=
(
2
x
−
1
−
1
)
n
F(x)=f^n(x)=\left(\frac{2}{x-1}-1\right)^n
F(x)=fn(x)=(x−12−1)n
用二项式定理:
F
(
x
)
=
(
2
x
−
1
−
1
)
n
=
∑
i
=
0
n
(
1
x
−
1
)
i
2
i
(
−
1
)
n
−
i
C
(
n
,
i
)
=
∑
i
=
0
n
(
1
+
x
+
x
2
+
.
.
.
)
i
2
i
(
−
1
)
n
−
i
C
(
n
,
i
)
F(x)=\left(\frac{2}{x-1}-1\right)^n=\sum_{i=0}^{n}\left(\frac{1}{x-1}\right)^i2^i(-1)^{n-i}C(n,i)\\ =\sum_{i=0}^{n}(1+x+x^2+...)^i2^i(-1)^{n-i}C(n,i)
F(x)=(x−12−1)n=i=0∑n(x−11)i2i(−1)n−iC(n,i)=i=0∑n(1+x+x2+...)i2i(−1)n−iC(n,i)
那么用隔板法可以得出,它的第
q
q
q 项就是
[
[
q
]
]
f
(
x
)
n
=
∑
i
=
0
n
C
(
q
+
i
−
1
,
i
−
1
)
2
i
(
−
1
)
n
−
i
C
(
n
,
i
)
[[q]]f(x)^n=\sum_{i=0}^{n}C(q+i-1,i-1)2^i(-1)^{n-i}C(n,i)
[[q]]f(x)n=i=0∑nC(q+i−1,i−1)2i(−1)n−iC(n,i)
我们要找的答案即
∑
q
=
0
p
[
[
q
]
]
f
(
x
)
n
=
∑
i
=
0
n
(
∑
q
=
0
p
C
(
q
+
i
−
1
,
i
−
1
)
)
2
i
(
−
1
)
n
−
i
C
(
n
,
i
)
=
∑
i
=
0
n
C
(
p
+
i
,
i
)
2
i
(
−
1
)
n
−
i
C
(
n
,
i
)
\sum_{q=0}^{p}[[q]]f(x)^n=\sum_{i=0}^{n}\left(\sum_{q=0}^{p}C(q+i-1,i-1)\right)2^i(-1)^{n-i}C(n,i)\\ =\sum_{i=0}^{n}C(p+i,i)2^i(-1)^{n-i}C(n,i)
q=0∑p[[q]]f(x)n=i=0∑n(q=0∑pC(q+i−1,i−1))2i(−1)n−iC(n,i)=i=0∑nC(p+i,i)2i(−1)n−iC(n,i)
成了!接下来只需要预处理阶乘求组合数,时间复杂度
O
(
n
)
O(n)
O(n) 。
CODE
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 3000005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
const int MOD = 1000000007;
int n,m,i,j,s,o,k;
int fac[MAXN],inv[MAXN],invf[MAXN];
int qkpow(int a,int b) {
int res = 1;
while(b > 0) {
if(b & 1) res = res *1ll* a % MOD;
a = a *1ll* a % MOD; b >>= 1;
}return res;
}
int C(int n,int m) {
if(m < 0 || m > n) return 0;
return fac[n] *1ll* invf[n-m] % MOD *1ll* invf[m] % MOD;
}
int main() {
fac[0]=fac[1]=inv[0]=inv[1]=invf[0]=invf[1]=1;
for(int i = 2;i <= 3000000;i ++) {
fac[i] = fac[i-1]*1ll*i % MOD;
inv[i] = (MOD-inv[MOD%i]) *1ll* (MOD/i) % MOD;
invf[i] = invf[i-1] *1ll* inv[i] % MOD;
}
n = read();m = read();
int ans = 0,po2 = 1;
for(int i = 0;i <= n;i ++) {
(ans += C(m+i,i)*1ll*po2 % MOD * (((n-i)&1) ? (MOD-1ll):1ll) % MOD *1ll* C(n,i) % MOD) %= MOD;
(po2 += po2) %= MOD;
}
printf("%d\n",ans);
return 0;
}
LOJ6671 EntropyIncreaser 与 Minecraft (生成函数)的更多相关文章
- 【LOJ6671】EntropyIncreaser 与 Minecraft
Orz lbt Description https://loj.ac/problem/6671 Solution
- hdu 5279 YJC plays Minecraft——生成函数
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5279 令 n 个点的树的 EGF 是 g(x) ,则 \( g(x) = \sum\limits_{i=0 ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ
第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...
- MineCraft note
客户端:http://pan.baidu.com/s/1hqgS8sshttp://pan.baidu.com/s/1mgmkduC 材质包:R3D小地图MODCraftGuide mod 内置合成表 ...
- [CodeForces - 712D]Memory and Scores (DP 或者 生成函数)
题目大意: 两个人玩取数游戏,第一个人分数一开始是a,第二个分数一开始是b,接下来t轮,每轮两人都选择一个[-k,k]范围内的整数,加到自己的分数里,求有多少种情况使得t轮结束后a的分数比b高. ( ...
- Ubuntu上安装Minecraft服务器
Minecraft由于其独特的魅力吸引了很多玩家.不过游戏的乐趣只有在和朋友一起玩的时候才最有意思,所以很早以前我就想建设自己的服务器.但由于专业知识欠缺,没有实现. 最近接触了Linux服务器,所以 ...
- HDU 1171 Big Event in HDU --暴力+生成函数
题意:给n种房子,每种房子有一个值val和个数cnt,现在要把这些房子分成两部分,争取两部分总值相等,如果不能相等,让A>B,且A-B最小. 解法:先跑一次生成函数,c[n]表示组成总值为n的方 ...
- HDU 2189 悼念512汶川大地震遇难同胞――来生一起走 --生成函数
这题跟上两题也差不多. 把150以内的素数找出来,把素数的值看做硬币的面值,每个硬币的个数即ceil(150/prime[i]),因为再多也没用,最多组成n=150就行了,所以又回到了找硬币问题.用生 ...
- HDU 1085 Holding Bin-Laden Captive --生成函数第一题
生成函数题. 题意:有币值1,2,5的硬币若干,问你最小的不能组成的币值为多少. 解法:写出生成函数: 然后求每项的系数即可. 因为三种硬币最多1000枚,1*1000+2*1000+5*1000=8 ...
随机推荐
- 开发工具-Visual Studio / Visual Studio Code 官方下载地址
更新记录 2022年6月10日 完善标题. Visual Studio官方下载地址 https://visualstudio.microsoft.com/ Visual Studio Code官方下载 ...
- Vmware 10~16激活码/序列号 汇总
Vmware 16 ZF3R0-FHED2-M80TY-8QYGC-NPKYF YF390-0HF8P-M81RQ-2DXQE-M2UT6 ZF71R-DMX85-08DQY-8YMNC-PPHV8 ...
- JS:比较运算符
比较运算符有如下: 1.== 等于: 值相等 var a = "0"; var b = 1; var c = 0; console.log(a==0); //true consol ...
- ShardingSphere-proxy-5.0.0容量范围分片的实现(五)
一.修改配置文件config-sharding.yaml,并重启服务 # # Licensed to the Apache Software Foundation (ASF) under one or ...
- Tapdata 携手精诚瑞宝,共拓 Real Time DaaS 蓝海市场
2021年10月22日,深圳钛铂数据有限公司「Tapdata」 与精诚瑞宝计算机系统有限公司「精诚瑞宝」战略合作签约仪式在深圳举行,Tapdata 创始人唐建法先生与精诚瑞宝副总经理余灿雄先生签署 ...
- Tapdata 实时数据融合平台解决方案(三):数据中台的技术需求
作者介绍:TJ,唐建法,Tapdata 钛铂数据 CTO,MongoDB中文社区主席,原MongoDB大中华区 首席架构师,极客时间MongoDB视频课程讲师. 我们讲完了这个中台的一个架构和它的逻 ...
- Docker安装canal、mysql进行简单测试与实现redis和mysql缓存一致性
一.简介 canal [kə'næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费. 早期阿里巴巴因为杭州和美国双机房部署,存在跨机房同步的业务需求 ...
- Data too long for column 'xxx' at row
Data too long for column 'xxx' at row 数据库的默认的utff-8,且连接的字符串也设置了utf-8,数据库字段用的text,但是还是报错,原因超出了长度,要最大的 ...
- Josephus问题(Ⅱ)
题目描述 n个人排成一圈,按顺时针方向依次编号1,2,3-n.从编号为1的人开始顺时针"一二"报数,报到2的人退出圈子.这样不断循环下去,圈子里的人将不断减少.最终一定会剩下一个人 ...
- 面试官:你确定 Redis 是单线程的进程吗?
作者:小林coding 计算机八股文网站:https://xiaolincoding.com 大家好,我是小林. 这次主要分享 Redis 线程模型篇的面试题. Redis 是单线程吗? Redis ...