题面

EntropyIncreaser 是组合计数大师。

EntropyIncreaser 很喜欢玩麦块。当然,EntropyIncreaser 拥有非同常人的超能力,他玩的是MOD版的 n 维麦块,换成数学语言也就是

Z

n

\mathbb{Z}^n

Zn 空间。他现在手里有一个特制的

T

N

T

\tt TNT

TNT方块:若将它放在

(

x

1

,

x

2

,

,

x

n

)

(x_1,x_2,…,x_n)

(x1​,x2​,…,xn​)(注意

x

i

x_i

xi​ 可能为负数)处,它将拥有

i

=

1

n

x

i

∑_{i=1}^n|x_i|

∑i=1n​∣xi​∣ 的威力值。EntropyIncreaser 只是想看看这种特制

T

N

T

\tt TNT

TNT的爆炸场面,他并不希望对其他东西造成太大的损害,所以这个

T

N

T

\tt TNT

TNT方块的威力值必须

p

⩽p

⩽p 。

EntropyIncreaser 想请你告诉他,一共有多少不同的位置放置

T

N

T

\tt TNT

TNT,使其满足他的要求。答案对

1

0

9

+

7

10^9+7

109+7 取模。

EntropyIncreaser 想了一秒就知道了答案。但他决定还是考考你。

Sample Input

3 5

Sample Output

231

题解

决定了!就用生成函数表达对这道题的尊敬!

其实这道题是可以当作生成函数入门训练题的。

我们对每一维坐标的绝对值进行考虑,若

x

i

0

|x_i|\not=0

∣xi​∣​=0 那么有正负两种情况,贡献为 2,若为 0,则只有一种情况,贡献为 1 。

因此,单个维度贡献的生成函数就是

f

(

x

)

=

1

+

2

x

+

2

x

2

+

.

.

.

=

2

x

1

1

f(x)=1+2x+2x^2+...=\frac{2}{x-1}-1

f(x)=1+2x+2x2+...=x−12​−1

继续推下去吧! 我们可以得到总答案关于威力值的生成函数

F

(

x

)

=

f

n

(

x

)

=

(

2

x

1

1

)

n

F(x)=f^n(x)=\left(\frac{2}{x-1}-1\right)^n

F(x)=fn(x)=(x−12​−1)n

用二项式定理:

F

(

x

)

=

(

2

x

1

1

)

n

=

i

=

0

n

(

1

x

1

)

i

2

i

(

1

)

n

i

C

(

n

,

i

)

=

i

=

0

n

(

1

+

x

+

x

2

+

.

.

.

)

i

2

i

(

1

)

n

i

C

(

n

,

i

)

F(x)=\left(\frac{2}{x-1}-1\right)^n=\sum_{i=0}^{n}\left(\frac{1}{x-1}\right)^i2^i(-1)^{n-i}C(n,i)\\ =\sum_{i=0}^{n}(1+x+x^2+...)^i2^i(-1)^{n-i}C(n,i)

F(x)=(x−12​−1)n=i=0∑n​(x−11​)i2i(−1)n−iC(n,i)=i=0∑n​(1+x+x2+...)i2i(−1)n−iC(n,i)

那么用隔板法可以得出,它的第

q

q

q 项就是

[

[

q

]

]

f

(

x

)

n

=

i

=

0

n

C

(

q

+

i

1

,

i

1

)

2

i

(

1

)

n

i

C

(

n

,

i

)

[[q]]f(x)^n=\sum_{i=0}^{n}C(q+i-1,i-1)2^i(-1)^{n-i}C(n,i)

[[q]]f(x)n=i=0∑n​C(q+i−1,i−1)2i(−1)n−iC(n,i)

我们要找的答案即

q

=

0

p

[

[

q

]

]

f

(

x

)

n

=

i

=

0

n

(

q

=

0

p

C

(

q

+

i

1

,

i

1

)

)

2

i

(

1

)

n

i

C

(

n

,

i

)

=

i

=

0

n

C

(

p

+

i

,

i

)

2

i

(

1

)

n

i

C

(

n

,

i

)

\sum_{q=0}^{p}[[q]]f(x)^n=\sum_{i=0}^{n}\left(\sum_{q=0}^{p}C(q+i-1,i-1)\right)2^i(-1)^{n-i}C(n,i)\\ =\sum_{i=0}^{n}C(p+i,i)2^i(-1)^{n-i}C(n,i)

q=0∑p​[[q]]f(x)n=i=0∑n​(q=0∑p​C(q+i−1,i−1))2i(−1)n−iC(n,i)=i=0∑n​C(p+i,i)2i(−1)n−iC(n,i)

成了!接下来只需要预处理阶乘求组合数,时间复杂度

O

(

n

)

O(n)

O(n) 。

CODE

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 3000005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
const int MOD = 1000000007;
int n,m,i,j,s,o,k;
int fac[MAXN],inv[MAXN],invf[MAXN];
int qkpow(int a,int b) {
int res = 1;
while(b > 0) {
if(b & 1) res = res *1ll* a % MOD;
a = a *1ll* a % MOD; b >>= 1;
}return res;
}
int C(int n,int m) {
if(m < 0 || m > n) return 0;
return fac[n] *1ll* invf[n-m] % MOD *1ll* invf[m] % MOD;
}
int main() {
fac[0]=fac[1]=inv[0]=inv[1]=invf[0]=invf[1]=1;
for(int i = 2;i <= 3000000;i ++) {
fac[i] = fac[i-1]*1ll*i % MOD;
inv[i] = (MOD-inv[MOD%i]) *1ll* (MOD/i) % MOD;
invf[i] = invf[i-1] *1ll* inv[i] % MOD;
}
n = read();m = read();
int ans = 0,po2 = 1;
for(int i = 0;i <= n;i ++) {
(ans += C(m+i,i)*1ll*po2 % MOD * (((n-i)&1) ? (MOD-1ll):1ll) % MOD *1ll* C(n,i) % MOD) %= MOD;
(po2 += po2) %= MOD;
}
printf("%d\n",ans);
return 0;
}

LOJ6671 EntropyIncreaser 与 Minecraft (生成函数)的更多相关文章

  1. 【LOJ6671】EntropyIncreaser 与 Minecraft

    Orz lbt Description https://loj.ac/problem/6671 Solution

  2. hdu 5279 YJC plays Minecraft——生成函数

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5279 令 n 个点的树的 EGF 是 g(x) ,则 \( g(x) = \sum\limits_{i=0 ...

  3. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ

    第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...

  4. MineCraft note

    客户端:http://pan.baidu.com/s/1hqgS8sshttp://pan.baidu.com/s/1mgmkduC 材质包:R3D小地图MODCraftGuide mod 内置合成表 ...

  5. [CodeForces - 712D]Memory and Scores (DP 或者 生成函数)

    题目大意: 两个人玩取数游戏,第一个人分数一开始是a,第二个分数一开始是b,接下来t轮,每轮两人都选择一个[-k,k]范围内的整数,加到自己的分数里,求有多少种情况使得t轮结束后a的分数比b高.  ( ...

  6. Ubuntu上安装Minecraft服务器

    Minecraft由于其独特的魅力吸引了很多玩家.不过游戏的乐趣只有在和朋友一起玩的时候才最有意思,所以很早以前我就想建设自己的服务器.但由于专业知识欠缺,没有实现. 最近接触了Linux服务器,所以 ...

  7. HDU 1171 Big Event in HDU --暴力+生成函数

    题意:给n种房子,每种房子有一个值val和个数cnt,现在要把这些房子分成两部分,争取两部分总值相等,如果不能相等,让A>B,且A-B最小. 解法:先跑一次生成函数,c[n]表示组成总值为n的方 ...

  8. HDU 2189 悼念512汶川大地震遇难同胞――来生一起走 --生成函数

    这题跟上两题也差不多. 把150以内的素数找出来,把素数的值看做硬币的面值,每个硬币的个数即ceil(150/prime[i]),因为再多也没用,最多组成n=150就行了,所以又回到了找硬币问题.用生 ...

  9. HDU 1085 Holding Bin-Laden Captive --生成函数第一题

    生成函数题. 题意:有币值1,2,5的硬币若干,问你最小的不能组成的币值为多少. 解法:写出生成函数: 然后求每项的系数即可. 因为三种硬币最多1000枚,1*1000+2*1000+5*1000=8 ...

随机推荐

  1. 【RocketMQ】NameServer的启动

    NameServer是一个注册中心,Broker在启动时向所有的NameServer注册,生产者Producer和消费者Consumer可以从NameServer中获取所有注册的Broker列表,并从 ...

  2. 2.如何正确理解古典概率中的条件概率《zobol的考研概率论教程》

    写本文主要是帮助粉丝理解考研中的古典概率-条件概率的具体定义. "B事件发生的条件下,A事件发生的概率"? "在A集合内有多少B的样本点"? "在B约 ...

  3. 新上线!3D单模型轻量化硬核升级,G级数据轻松拿捏!

    "3D模型体量过大.面数过多.传输展示困难",用户面对这样的3D数据,一定不由得皱起眉头.更便捷.快速处理三维数据,是每个3D用户对高效工作的向往. 在老子云最新上线的单模型轻量化 ...

  4. Operator介绍

    一.Operator简介 在Kubernetes中我们经常使用Deployment.DaemonSet.Service.ConfigMap等资源,这些资源都是Kubernetes的内置资源,他们的创建 ...

  5. 使用MySqlBulkLoader批量插入数据

    最近在项目中遇到插入几万.几十万.几百万的数据到MYSQL数据库,使用EF插入会发现插入速度非常慢的场景, 数据量非常大时EF插入需要几十分钟,甚至几个小时,这样子的速度肯定不是我们所期望的. 后面经 ...

  6. .NET混合开发解决方案24 WebView2对比CefSharp的超强优势

    系列目录     [已更新最新开发文章,点击查看详细] WebView2控件应用详解系列博客 .NET桌面程序集成Web网页开发的十种解决方案 .NET混合开发解决方案1 WebView2简介 .NE ...

  7. Python收集这些视频只是单纯的想做做壁纸,大家不要误会

    首先澄清一下,我用Python收集这些视频,绝不是想做别的什么,真的只是用来做动态壁纸,大家不要误会!我不是那样的人~ 这样的不过份吧 (这个动图看不看的到就看有没有缘分了 ) 阅读本文你需要准备 1 ...

  8. Markdown第一次学习

    # # Markdown学习 一级标题: #空格+标题名称+回车得到一级标题 ## 二级标题 一级标题方法中变成两个##号 ### 三级标题 变成三个###号,以此类推,最多到六级标题 ## 字体 h ...

  9. NC14731 逆序对

    NC14731 逆序对 题目 题目描述 求所有长度为 \(n\) 的 \(01\) 串中满足如下条件的二元组个数: 设第 \(i\) 位和第 \(j\) 位分别位 \(a_i\) 和 \(a_j\) ...

  10. 一个豆瓣电影Top250爬虫

    一个爬虫 这是我第一次接触爬虫,写的第一个爬虫实例. https://movie.douban.com/top250 模块 import requests #用于发送请求 import re #使用正 ...