elasticsearch之使用正则表达式自定义分词逻辑
一、Pattern Analyzer简介
elasticsearch在索引和搜索之前都需要对输入的文本进行分词,elasticsearch提供的pattern analyzer使得我们可以通过正则表达式的简单方式来定义分隔符,从而达到自定义分词的处理逻辑;
内置的的pattern analyzer的名字为pattern,其使用的模式是W+,即除了字母和数字之外的所有非单词字符;
analyzers.add(new PreBuiltAnalyzerProviderFactory("pattern", CachingStrategy.ELASTICSEARCH,
() -> new PatternAnalyzer(Regex.compile("\\W+" /*PatternAnalyzer.NON_WORD_PATTERN*/, null), true,
CharArraySet.EMPTY_SET)));
作为全局的pattern analyzer,我们可以直接使用
POST _analyze
{
"analyzer": "pattern",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
{
"tokens" : [
{
"token" : "the",
"start_offset" : 0,
"end_offset" : 3,
"type" : "word",
"position" : 0
},
{
"token" : "2",
"start_offset" : 4,
"end_offset" : 5,
"type" : "word",
"position" : 1
},
{
"token" : "quick",
"start_offset" : 6,
"end_offset" : 11,
"type" : "word",
"position" : 2
},
{
"token" : "brown",
"start_offset" : 12,
"end_offset" : 17,
"type" : "word",
"position" : 3
},
{
"token" : "foxes",
"start_offset" : 18,
"end_offset" : 23,
"type" : "word",
"position" : 4
},
{
"token" : "jumped",
"start_offset" : 24,
"end_offset" : 30,
"type" : "word",
"position" : 5
},
{
"token" : "over",
"start_offset" : 31,
"end_offset" : 35,
"type" : "word",
"position" : 6
},
{
"token" : "the",
"start_offset" : 36,
"end_offset" : 39,
"type" : "word",
"position" : 7
},
{
"token" : "lazy",
"start_offset" : 40,
"end_offset" : 44,
"type" : "word",
"position" : 8
},
{
"token" : "dog",
"start_offset" : 45,
"end_offset" : 48,
"type" : "word",
"position" : 9
},
{
"token" : "s",
"start_offset" : 49,
"end_offset" : 50,
"type" : "word",
"position" : 10
},
{
"token" : "bone",
"start_offset" : 51,
"end_offset" : 55,
"type" : "word",
"position" : 11
}
]
}
二、自定义Pattern Analyzer
我们可以通过以下方式自定pattern analyzer,并设置分隔符为所有的空格符号;
PUT my_pattern_test_space_analyzer
{
"settings": {
"analysis": {
"analyzer": {
"my_pattern_test_space_analyzer": {
"type": "pattern",
"pattern": "[\\p{Space}]",
"lowercase": true
}
}
}
}
}
我们使用自定义的pattern analyzer测试一下效果
POST my_pattern_test_space_analyzer/_analyze
{
"analyzer": "my_pattern_test_space_analyzer",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
{
"tokens" : [
{
"token" : "the",
"start_offset" : 0,
"end_offset" : 3,
"type" : "word",
"position" : 0
},
{
"token" : "2",
"start_offset" : 4,
"end_offset" : 5,
"type" : "word",
"position" : 1
},
{
"token" : "quick",
"start_offset" : 6,
"end_offset" : 11,
"type" : "word",
"position" : 2
},
{
"token" : "brown-foxes",
"start_offset" : 12,
"end_offset" : 23,
"type" : "word",
"position" : 3
},
{
"token" : "jumped",
"start_offset" : 24,
"end_offset" : 30,
"type" : "word",
"position" : 4
},
{
"token" : "over",
"start_offset" : 31,
"end_offset" : 35,
"type" : "word",
"position" : 5
},
{
"token" : "the",
"start_offset" : 36,
"end_offset" : 39,
"type" : "word",
"position" : 6
},
{
"token" : "lazy",
"start_offset" : 40,
"end_offset" : 44,
"type" : "word",
"position" : 7
},
{
"token" : "dog's",
"start_offset" : 45,
"end_offset" : 50,
"type" : "word",
"position" : 8
},
{
"token" : "bone.",
"start_offset" : 51,
"end_offset" : 56,
"type" : "word",
"position" : 9
}
]
}
三、常用的Java中的正则表达式
elasticsearch的Pattern Analyzer使用的Java Regular Expressions,只有了解Java中一些常用的正则表达式才能更好的自定义pattern analyzer;
单字符定义
x The character x
\\ The backslash character
\0n The character with octal value 0n (0 <= n <= 7)
\0nn The character with octal value 0nn (0 <= n <= 7)
\0mnn The character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7)
\xhh The character with hexadecimal value 0xhh
\uhhhh The character with hexadecimal value 0xhhhh
\x{h...h} The character with hexadecimal value 0xh...h (Character.MIN_CODE_POINT <= 0xh...h <= Character.MAX_CODE_POINT)
\t The tab character ('\u0009')
\n The newline (line feed) character ('\u000A')
\r The carriage-return character ('\u000D')
\f The form-feed character ('\u000C')
\a The alert (bell) character ('\u0007')
\e The escape character ('\u001B')
\cx The control character corresponding to x
字符分组
[abc] a, b, or c (simple class)
[^abc] Any character except a, b, or c (negation)
[a-zA-Z] a through z or A through Z, inclusive (range)
[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)
[a-z&&[def]] d, e, or f (intersection)
[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)
[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z](subtraction)
预定义的字符分组
. Any character (may or may not match line terminators)
\d A digit: [0-9]
\D A non-digit: [^0-9]
\h A horizontal whitespace character: [ \t\xA0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]
\H A non-horizontal whitespace character: [^\h]
\s A whitespace character: [ \t\n\x0B\f\r]
\S A non-whitespace character: [^\s]
\v A vertical whitespace character: [\n\x0B\f\r\x85\u2028\u2029]
\V A non-vertical whitespace character: [^\v]
\w A word character: [a-zA-Z_0-9]
\W A non-word character: [^\w]
POSIX字符分组
\p{Lower} A lower-case alphabetic character: [a-z]
\p{Upper} An upper-case alphabetic character:[A-Z]
\p{ASCII} All ASCII:[\x00-\x7F]
\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]
\p{Digit} A decimal digit: [0-9]
\p{Alnum} An alphanumeric character:[\p{Alpha}\p{Digit}]
\p{Punct} Punctuation: One of !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
\p{Graph} A visible character: [\p{Alnum}\p{Punct}]
\p{Print} A printable character: [\p{Graph}\x20]
\p{Blank} A space or a tab: [ \t]
\p{Cntrl} A control character: [\x00-\x1F\x7F]
\p{XDigit} A hexadecimal digit: [0-9a-fA-F]
\p{Space} A whitespace character: [ \t\n\x0B\f\r]
以下我们通过正则表达式[\p{Punct}|\p{Space}]可以找出字符串中的标点符号;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class Main {
public static void main(String[] args) {
Pattern p = Pattern.compile("[\\p{Punct}|\\p{Space}]");
Matcher matcher = p.matcher("The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.");
while(matcher.find()){
System.out.println("find "+matcher.group()
+" position: "+matcher.start()+"-"+matcher.end());
}
}
}
find position: 3-4
find position: 5-6
find position: 11-12
find - position: 17-18
find position: 23-24
find position: 30-31
find position: 35-36
find position: 39-40
find position: 44-45
find ' position: 48-49
find position: 50-51
find . position: 55-56
四、 Pattern Analyzer的实现
PatternAnalyzer会根据具体的配置信息,使用PatternTokenizer、LowerCaseFilter、StopFilter来组合构建TokenStreamComponents
PatternAnalyzer.java
protected TokenStreamComponents createComponents(String s) {
final Tokenizer tokenizer = new PatternTokenizer(pattern, -1);
TokenStream stream = tokenizer;
if (lowercase) {
stream = new LowerCaseFilter(stream);
}
if (stopWords != null) {
stream = new StopFilter(stream, stopWords);
}
return new TokenStreamComponents(tokenizer, stream);
}
PatternTokenizer里的incrementToken会对输入的文本进行分词处理;由于PatternAnalyzer里初始化PatternTokenizer里的incrementToken会对输入的文本进行分词处理的时候对group设置为-1,所以这里走else分支,最终提取命中符号之间的单词;
PatternTokenizer.java
@Override
public boolean incrementToken() {
if (index >= str.length()) return false;
clearAttributes();
if (group >= 0) {
// match a specific group
while (matcher.find()) {
index = matcher.start(group);
final int endIndex = matcher.end(group);
if (index == endIndex) continue;
termAtt.setEmpty().append(str, index, endIndex);
offsetAtt.setOffset(correctOffset(index), correctOffset(endIndex));
return true;
}
index = Integer.MAX_VALUE; // mark exhausted
return false;
} else {
// String.split() functionality
while (matcher.find()) {
if (matcher.start() - index > 0) {
// found a non-zero-length token
termAtt.setEmpty().append(str, index, matcher.start());
offsetAtt.setOffset(correctOffset(index), correctOffset(matcher.start()));
index = matcher.end();
return true;
}
index = matcher.end();
}
if (str.length() - index == 0) {
index = Integer.MAX_VALUE; // mark exhausted
return false;
}
termAtt.setEmpty().append(str, index, str.length());
offsetAtt.setOffset(correctOffset(index), correctOffset(str.length()));
index = Integer.MAX_VALUE; // mark exhausted
return true;
}
}
elasticsearch之使用正则表达式自定义分词逻辑的更多相关文章
- Elasticsearch笔记六之中文分词器及自定义分词器
中文分词器 在lunix下执行下列命令,可以看到本来应该按照中文"北京大学"来查询结果es将其分拆为"北","京","大" ...
- 【分词器及自定义】Elasticsearch中文分词器及自定义分词器
中文分词器 在lunix下执行下列命令,可以看到本来应该按照中文”北京大学”来查询结果es将其分拆为”北”,”京”,”大”,”学”四个汉字,这显然不符合我的预期.这是因为Es默认的是英文分词器我需要为 ...
- Elasticsearch修改分词器以及自定义分词器
Elasticsearch修改分词器以及自定义分词器 参考博客:https://blog.csdn.net/shuimofengyang/article/details/88973597
- ElasticSearch教程——自定义分词器(转学习使用)
一.分词器 Elasticsearch中,内置了很多分词器(analyzers),例如standard(标准分词器).english(英文分词)和chinese(中文分词),默认是standard. ...
- ElasticSearch已经配置好ik分词和mmseg分词(转)
ElasticSearch是一个基于Lucene构建的开源,分布式,RESTful搜索引擎.设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便.支持通过HTTP使用JSON进行数据索引 ...
- 在ElasticSearch中使用 IK 中文分词插件
我这里集成好了一个自带IK的版本,下载即用, https://github.com/xlb378917466/elasticsearch5.2.include_IK 添加了IK插件意味着你可以使用ik ...
- 使用Docker 安装Elasticsearch、Elasticsearch-head、IK分词器 和使用
原文:使用Docker 安装Elasticsearch.Elasticsearch-head.IK分词器 和使用 Elasticsearch的安装 一.elasticsearch的安装 1.镜像拉取 ...
- ElasticSearch第三步-中文分词
ElasticSearch系列学习 ElasticSearch第一步-环境配置 ElasticSearch第二步-CRUD之Sense ElasticSearch第三步-中文分词 ElasticS ...
- 自定义分词器Analyzer
Analyzer,或者说文本分析的过程,实质上是将输入文本转化为文本特征向量的过程.这里所说的文本特征,可以是词或者是短语.它主要包括以下四个步骤: 1.分词,将文本解析为单词或短语 2.归一化,将文 ...
- 根据异常自定义处理逻辑(【附】java异常处理规范)
▄︻┻┳═一『异常捕获系列』Agenda: ▄︻┻┳═一有关于异常捕获点滴,plus我也揭揭java的短 ▄︻┻┳═一根据异常自定义处理逻辑([附]java异常处理规范) ▄︻┻┳═一利用自定义异常来 ...
随机推荐
- JavaScript入门②-函数(1)基础{浅出}
01.JS函数基础 1.1.函数定义 函数(方法)就是一段定义好的逻辑代码,函数本身也是一个object引用对象.三种函数构造方式: ① 函数申明:function 函数名(参数){代码},申明函数有 ...
- jupyter 数据显示设置
#设置显示行数pd.set_option('display.max_row',None)#设置显示列数pd.set_option('display.max_column',None)#设置显示宽度pd ...
- Javascript | 模拟mvc实现点餐程序
MVC模式是一个比较成熟的开发模式.M是指业务模型,V是指用户界面,C则是控制器,使用MVC的目的是将M和V的实现代码分离,从而使同一个程序可以使用不同的表现形式.其中,View的定义比较清晰,就是用 ...
- 【转载】EXCEL VBA 20个有用的ExcelVBA代码
1.显示多个隐藏的工作表 如果你的工作簿里面有多个隐藏的工作表,你需要花很多时间一个一个的显示隐藏的工作表. 下面的代码,可以让你一次显示所有的工作表 Sub UnhideAllWoksheets() ...
- [python] tensorflow中的argmax()函数argmax()函数
首先 import tensorflow as tf tf.argmax(tenso,n)函数会返回tensor中参数指定的维度中的最大值的索引或者向量.当tensor为矩阵返回向量,tensor为向 ...
- 聊聊web漏洞挖掘第一期
之前写2022年度总结的时候,有提到要给大家分享漏洞挖掘技巧.这里简单分享一些思路,更多的内容需要大家举一反三. 文章准备昨晚写的,昨天晚上出去唱歌,回来太晚了,耽搁了.昨天是我工作的last day ...
- Java学习笔记:2021年12月31日下午-2022年1月1日上午
Java学习笔记:2021年12月31日下午-2022年1月1日上午 摘要:主要记录了计算机的电气构成,学习Linux系统的原因以及关于Linux以及相关操作的基础知识. 目录 Java学习笔记:20 ...
- 题解CF893C Rumor
思路 竟然朋友之间可以传递故事,那么,我们设两两有间接或直接的朋友关系的为一个友好集合,那么我们只要每一个友好集合买一次就好了. 那应该怎么买呢?由于题面让我们求的是[最少的价钱],那我们可以考虑每一 ...
- ios网络协议从http变成https
最近发了一个很蛋疼的事,iphone16.x以后的系统浏览器自动将http请求切换为https请求了 工程自测 1.在ihone14 pro max,iOS16.1的手机上用http请求是失败的,在i ...
- 音频音量调整中的ramp up & down
在日常生活中不管是打电话还是听音乐,都会遇到音量不合适而去调整音量的情况.如果音量调整软件处理不好,就会听到pop noise.产生pop noise的原因是音量直接从当前值骤变到目标值,而不是缓慢的 ...