洛谷P1771 方程的解
P1771 方程的解
都知道这个题可以用隔板法做
把这个\(g(x)\)想象为.....\(g(x)\)个苹果?
因为解是正整数,所以给这些“苹果”分组的时候每组最少有一个
然后我们在这\(g(x)\)个苹果形成的\(g(x)-1\)个空隙中插入\(k-1\)个板就把它分成了\(k\)组
所以答案是\(\binom{g(x)-1}{k-1}\)
然而组合数要用到除法,这题又要高精
不过高精除低精好像也没有很难,莫名恐惧
我们可以给每个数质因数分解,记录每个质因数出现次数,乘法时加一,除法时减一就行了然而这样并没有啥用
不过这种方法可以运用在答案要模一个数,但模数不是质数不能求逆元的情况下
要提前筛质数,一开始我居然认为\(n\)的质因数最大不超过\(\sqrt{n}\),直接手打质数表,结果一直WA
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int p[1006],notp[1006];
int num[1006],a[10005];
inline void getprime(int n){
for(reg int i=2;i<=n;i++){
if(notp[i]) continue;
p[++p[0]]=i;
for(reg int j=i+i;j<=n;j+=i) notp[j]=1;
}
}
inline int power(int a,int b){
reg int ret=1;
while(b){
if(b&1) ret=(ret*a)%1000;
a=(a*a)%1000;b>>=1;
}
return ret;
}
inline void fen(int x,int k){
for(reg int i=1;i<=p[0]&&x>1;i++){
for(;!(x%p[i]);x/=p[i])
num[i]+=k;
}
}
inline void mul(int x){
for(reg int i=1;i<=a[0];i++) a[i]*=x;
for(reg int i=1;i<a[0];i++) a[i+1]+=a[i]/10,a[i]%=10;
for(;a[a[0]]>9;a[0]++) a[a[0]+1]+=a[a[0]]/10,a[a[0]]%=10;
}
int main(){
int k=read()-1,x=read()%1000;
x=power(x,x)-1;
// std::printf("%d %d\n",k,x);
getprime(std::max(k,x));
a[0]=a[1]=1;
for(reg int i=k+1;i<=x;i++) fen(i,1);
for(reg int i=2;i<=x-k;i++) fen(i,-1);
for(reg int i=1;i<=p[0];i++){
for(reg int j=1;j<=num[i];j++) mul(p[i]);
}
for(reg int i=a[0];i;i--) std::printf("%d",a[i]);
return 0;
}
洛谷P1771 方程的解的更多相关文章
- 洛谷P1771 方程的解_NOI导刊2010提高(01)
题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...
- P1771 方程的解_NOI导刊2010提高(01)
P1771 方程的解_NOI导刊2010提高(01) 按题意用快速幂把$g(x)$求出来 发现这不就是个组合数入门题吗! $k$个人分$g(x)$个苹果,每人最少分$1$个,有几种方法? 根据插板法, ...
- 洛谷【P1619】 解一元二次方程的烦恼
我对模拟的理解:https://www.cnblogs.com/AKMer/p/9064018.html 题目传送门:https://www.luogu.org/problemnew/show/P16 ...
- 洛谷 P2312 & bzoj 3751 解方程 —— 取模
题目:https://www.luogu.org/problemnew/show/P2312 https://www.lydsy.com/JudgeOnline/problem.php?id=3751 ...
- 洛谷 题解 P2312 【解方程】
Problem P2312 [解方程] >>> record 用时: 1166ms 空间: 780KB(0.76MB) 代码长度: 2.95KB 提交记录: R9909587 > ...
- 洛谷 2312 / bzoj 3751 解方程——取模
题目:https://www.luogu.org/problemnew/show/P2312 https://www.lydsy.com/JudgeOnline/problem.php?id=3751 ...
- 洛谷P2365 任务安排 [解法一]
题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始 ...
- BZOJ3129/洛谷P3301方程(SDOI2013)容斥原理+扩展Lucas定理
题意:给定方程x1+x2+....xn=m,每个x是正整数.但是对前n1个数做了限制x1<=a1,x2<=a2...xn1<=an1,同时对第n1+1到n1+n2个数也做了限制xn1 ...
- 洛谷——P1689 方程求解
P1689 方程求解 题目描述 给一个方程,形如X+Y=Z或X-Y=Z.给出了其中两个未知数,请求出第三个数.未知数用‘?’表示,等式中也许会出现一些多余的空格. 输入输出格式 输入格式: 一行,方程 ...
随机推荐
- 2017蓝桥杯贪吃蛇(C++C组)
原题: 贪吃蛇长度+-------------------------------------------------+| ...
- 页面存在多个url,使用jmeter进行遍历操作
有一次遇见一个问题:进入网站后,有多个相同的url,但是仅url后面的路径中id有区别,如下图:这时我想要遍历点击查看url详情内容:那么就可以使用一个“逻辑控制器---foreach控制器” 如下: ...
- Pytest系列(20)- allure结合pytest,allure.step()、allure.attach的详细使用
如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 前言 allure除了支持pyte ...
- shell-function 删除目录和文件
function sDelDirFile() { if [ "$#" -eq 1 ];then if [ -e "$1" ];then rm "$1& ...
- 怎么高效学习python?其实只需要这个方法,快速掌握不叫事儿
很多人想学python,并且希望能快速高效的学习python,但一直都没有找到合适的方法,下面谈一下我的方法. 首先,高效入门python 怎么高效学习python?想要高效,就要先搞清楚你这个阶段, ...
- 1 - Apache HttpClient 简单使用
Apache HttpClient 是Apache 开源的实现Http协议的java开源库. HttpClien 是客户端的HTTP通信实现库,实现HTTP GET 和POST请求,获取响应内容. A ...
- python selenium模块 xpath定位
''' 附w3xpath语法地址 https://www.w3school.com.cn/xpath/xpath_syntax.asp 总结: 返回匹配到所有符合条件的第一个节点,对象是 <cl ...
- Java前台传值至后台中文乱码
记一次常见问题 今天导入了一个网上下载的项目,运行后发现,前台传值 到Servlet,Servlet保存至数据库,数据库保存的中文数据出现乱码,检查了一下表中的编码是utf8没错. 输出测试了一下 原 ...
- vue2.x学习笔记(十七)
接着前面的内容:https://www.cnblogs.com/yanggb/p/12616847.html. 动态组件&异步组件 在前面学习组件基础的时候学习过动态组件,官方文档给出过一个例 ...
- MySQL使用mysqldump+binlog完整恢复被删除的数据库
(一)概述 在日常的MySQL数据库运维过程中,可能会遇到用户误删除数据,常见的误删除数据操作有: 用户执行delete,因为条件不对,删除了不应该删除的数据(DML操作): 用户执行update,因 ...