2019-07-25【机器学习】无监督学习之聚类 K-Means算法实例 (1999年中国居民消费城市分类)
样本
北京,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64
天津,2459.77,495.47,697.33,302.87,284.19,735.97,570.84,305.08
河北,1495.63,515.90,362.37,285.32,272.95,540.58,364.91,188.63
山西,1406.33,477.77,290.15,208.57,201.50,414.72,281.84,212.10
内蒙古,1303.97,524.29,254.83,192.17,249.81,463.09,287.87,192.96
辽宁,1730.84,553.90,246.91,279.81,239.18,445.20,330.24,163.86
吉林,1561.86,492.42,200.49,218.36,220.69,459.62,360.48,147.76
黑龙江,1410.11,510.71,211.88,277.11,224.65,376.82,317.61,152.85
上海,3712.31,550.74,893.37,346.93,527.00,1034.98,720.33,462.03
江苏,2207.58,449.37,572.40,211.92,302.09,585.23,429.77,252.54
浙江,2629.16,557.32,689.73,435.69,514.66,795.87,575.76,323.36
安徽,1844.78,430.29,271.28,126.33,250.56,513.18,314.00,151.39
福建,2709.46,428.11,334.12,160.77,405.14,461.67,535.13,232.29
江西,1563.78,303.65,233.81,107.90,209.70,393.99,509.39,160.12
山东,1675.75,613.32,550.71,219.79,272.59,599.43,371.62,211.84
河南,1427.65,431.79,288.55,208.14,217.00,337.76,421.31,165.32
湖南,1942.23,512.27,401.39,206.06,321.29,697.22,492.60,226.45
湖北,1783.43,511.88,282.84,201.01,237.60,617.74,523.52,182.52
广东,3055.17,353.23,564.56,356.27,811.88,873.06,1082.82,420.81
广西,2033.87,300.82,338.65,157.78,329.06,621.74,587.02,218.27
海南,2057.86,186.44,202.72,171.79,329.65,477.17,312.93,279.19
重庆,2303.29,589.99,516.21,236.55,403.92,730.05,438.41,225.80
四川,1974.28,507.76,344.79,203.21,240.24,575.10,430.36,223.46
贵州,1673.82,437.75,461.61,153.32,254.66,445.59,346.11,191.48
云南,2194.25,537.01,369.07,249.54,290.84,561.91,407.70,330.95
西藏,2646.61,839.70,204.44,209.11,379.30,371.04,269.59,389.33
陕西,1472.95,390.89,447.95,259.51,230.61,490.90,469.10,191.34
甘肃,1525.57,472.98,328.90,219.86,206.65,449.69,249.66,228.19
青海,1654.69,437.77,258.78,303.00,244.93,479.53,288.56,236.51
宁夏,1375.46,480.89,273.84,317.32,251.08,424.75,228.73,195.93
新疆,1608.82,536.05,432.46,235.82,250.28,541.30,344.85,214.40
import numpy as np
from sklearn.cluster import KMeans #导入聚类KMean算法 def loadData(filePath):
fr = open(filePath, 'r+') #以读的方式打开
lines = fr.readlines()
retData = []
retCityName = []
for line in lines:
#print(line)
items = line.strip().split(",") #以,为分割返回列表,strip去除 \n
#print(items)
retCityName.append(items[0])#根据数据位置,添加城市名字
retData.append([float(items[i]) for i in range(1, len(items))])
return retData, retCityName if __name__ == '__main__':
data, cityName = loadData('city.txt') #导入数据
km = KMeans(n_clusters=4) #聚类中心的个数
label = km.fit_predict(data) #调用算法分标签,分为n_clusters=4类,默认调用欧式空间距离
#print(label)
#print(km.cluster_centers_)
expenses = np.sum(km.cluster_centers_, axis=1) #求和费用
#print(expenses)
#print(expenses)
CityCluster = [[], [], [], []] #二维数组,对应n_clusters=4
for i in range(len(cityName)):
CityCluster[label[i]].append(cityName[i]) #加入到数组 for i in range(len(CityCluster)):
print("Expenses:%.2f" % expenses[i])
print(CityCluster[i])
输出结果
2019-07-25【机器学习】无监督学习之聚类 K-Means算法实例 (1999年中国居民消费城市分类)的更多相关文章
- 斯坦福机器学习视频笔记 Week8 无监督学习:聚类与数据降维 Clusting & Dimensionality Reduction
监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analy ...
- <机器学习>无监督学习算法总结
本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方 ...
- 易百教程人工智能python修正-人工智能无监督学习(聚类)
无监督机器学习算法没有任何监督者提供任何指导. 这就是为什么它们与真正的人工智能紧密结合的原因. 在无人监督的学习中,没有正确的答案,也没有监督者指导. 算法需要发现用于学习的有趣数据模式. 什么是聚 ...
- 5.无监督学习-DBSCAN聚类算法及应用
DBSCAN方法及应用 1.DBSCAN密度聚类简介 DBSCAN 算法是一种基于密度的聚类算法: 1.聚类的时候不需要预先指定簇的个数 2.最终的簇的个数不确定DBSCAN算法将数据点分为三类: 1 ...
- 4.无监督学习--K-means聚类
K-means方法及其应用 1.K-means聚类算法简介: k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低.主要处理过程包括: 1.随机选择k个点作为 ...
- 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用
1.用python实现K均值算法 import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) ...
- 2019-07-31【机器学习】无监督学习之聚类 K-Means算法实例 (图像分割)
样本: 代码: import numpy as np import PIL.Image as image from sklearn.cluster import KMeans def loadData ...
- 2019-07-28【机器学习】无监督学习之聚类 DBSCAN方法及其应用 (在线大学生上网时间分析)
样本: import numpy as np import sklearn.cluster as skc from sklearn import metrics import matplotlib.p ...
- 【机器学习笔记五】聚类 - k均值聚类
参考资料: [1]Spark Mlib 机器学习实践 [2]机器学习 [3]深入浅出K-means算法 http://www.csdn.net/article/2012-07-03/2807073- ...
随机推荐
- .Net微服务实战之技术选型篇
王者荣耀 去年我有幸被老领导邀请以系统架构师的岗位带技术团队,并对公司项目以微服务进行了实施.无论是技术团队还是技术架构都是由我亲自的从0到1的选型与招聘成型的,此过程让我受益良多,因此也希望在接下来 ...
- 关于Quartz .NET(V3.0.7)的简要说明
目录 0. 任务调度 1. Quartz .NET 1.1 基本概念 1.2 主要接口和对象 2. 使用示例 2.0 准备工作 2.1 每间隔一定时间间隔执行一次任务 2.3 某天的固定时间点执行任务 ...
- 【转】Java包管理器Maven学习
Maven 引入Jar包的几种情况 1.通过pom.xml中导入的jar包 (1)链接打开http://mvnrepository.com/ (2)搜索罐包,比如我想要的是servlet的api.ja ...
- Element没更新了?Element没更新,基于El的扩展库更新
think-vuele 基于Vue和ElementUI框架进行整合二次开发的一个框架.提供一些elementUI没有的或当时没有的控件.优化了或简化了便于2B软件开发的一些控件 demo:http:/ ...
- Scapy编写UDP扫描脚本
脚本内容如下: from scapy.all import * import optparse import threading def scan(target,port): pkt=IP(dst=t ...
- hdu6026 dijkstra
题目链接:http://icpc.njust.edu.cn/Problem/Hdu/6026/ 题意大致是:给定一个图,要求删边使他变成树,使得每个点到0的距离就是原图中0到这个点的最短路径.其实就是 ...
- 洛谷1378 油滴扩展 dfs进行回溯搜索
题目链接:https://www.luogu.com.cn/problem/P1378 题目中给出矩形的长宽和一些点,可以在每个点放油滴,油滴会扩展,直到触碰到矩形的周边或者其他油滴的边缘,求出剩余面 ...
- command > /dev/null command > /dev/null 2>&1nohup command &> /dev/null的区别
1.对以下命令进行依次区分 command 执行一条普通的命令 command > /dev/null '>'表示将标准输出重定向 '>>'表示追加,/dev/null是一 ...
- Spring04——Spring MVC 全解析
前文分别介绍了 Spring IOC 与 Spring AOP 的相关知识,本文将为各位大概带来 Spring MVC 的知识点.关注我的公众号「Java面典」,每天 10:24 和你一起了解更多 J ...
- JMX(Java Management Extension)学习
目录 基本概念 MBean的种类 StandardMBean DynamicBean ModelMBean JMX的实现方式 StandardMBean的使用方法 JMX服务的访问方式 JMX--No ...