只有满怀自信的人,能在任何地方都怀有自信,沉浸在生活中,并认识自己的意志。

前言

最近公司有一个生产的小集群,专门用于运行spark作业。但是偶尔会因为nn或dn压力过大而导致作业checkpoint操作失败进而导致spark 流任务失败。本篇记录从应用层面对spark作业进行优化,进而达到优化集群的作用。

集群使用情况

有数据的目录以及使用情况如下:

目录
说明
大小
文件数量
数据数量占比
数据大小占比
/user/root/.sparkStaging/applicationIdxxx spark任务配置以及所需jar包 5G 约1k 约20% 约100%
/tmp/checkpoint/xxx/{commits|metadata|offsets|sources} checkpoint文件,其中commits和offsets频繁变动 2M 约4k 约80% 约0%

对于.sparkStaging目录,不经常变动,只需要优化其大小即可。

对于 checkpoint目录,频繁性增删,从生成周期和保留策略两方面去考虑。

.sparkStaging目录优化

对于/user/root/.sparkStaging下文件,是spark任务依赖文件,可以将jar包上传到指定目录下,避免或减少了jar包的重复上传,进而减少任务的等待时间。

可以在spark的配置文件spark-defaults.conf配置如下内容:

spark.yarn.archive=hdfs://hdfscluster/user/hadoop/jars
spark.yarn.preserve.staging.files=false

参数说明

Property Name
Default
Meaning
spark.yarn.archive (none) An archive containing needed Spark jars for distribution to the YARN cache. If set, this configuration replaces spark.yarn.jars and the archive is used in all the application's containers. The archive should contain jar files in its root directory. Like with the previous option, the archive can also be hosted on HDFS to speed up file distribution.
spark.yarn.preserve.staging.files false Set to true to preserve the staged files (Spark jar, app jar, distributed cache files) at the end of the job rather than delete them.

checkpoint优化

首先了解一下 checkpoint文件代表的含义。

checkpoint文件说明

  • offsets 目录 - 预先记录日志,记录每个批次中存在的偏移量。为了确保给定的批次将始终包含相同的数据,我们在进行任何处理之前将其写入此日志。因此,该日志中的第N个记录指示当前正在处理的数据,第N-1个条目指示哪些偏移已持久地提交给sink。

  • commits 目录 - 记录已完成的批次ID的日志。这用于检查批处理是否已完全处理,并且其输出已提交给接收器,因此无需再次处理。(例如)在重新启动过程中使用,以帮助识别接下来要运行的批处理。

  • metadata 文件 - 与整个查询关联的元数据,只有一个 StreamingQuery 唯一ID

  • sources目录 - 保存起始offset信息

下面从两个方面来优化checkpoint。

第一,从触发checkpoint机制方面考虑

trigger的机制

Trigger是用于指示 StreamingQuery 多久生成一次结果的策略。

Trigger有三个实现类,分别为:

  • OneTimeTrigger - A Trigger that processes only one batch of data in a streaming query then terminates the query.

  • ProcessingTime - A trigger that runs a query periodically based on the processing time. If interval is 0, the query will run as fast as possible.by default,trigger is ProcessingTime, and interval=0

  • ContinuousTrigger - A Trigger that continuously processes streaming data, asynchronously checkpointing at the specified interval.

可以为 ProcessingTime 指定一个时间 或者使用 指定时间的ContinuousTrigger ,固定生成checkpoint的周期,避免checkpoint生成过于频繁,减轻多任务下小集群的nn的压力

第二,从checkpoint保留机制考虑。

保留机制

spark.sql.streaming.minBatchesToRetain - 必须保留并使其可恢复的最小批次数,默认为 100

可以调小保留的batch的次数,比如调小到 20,这样 checkpoint 小文件数量整体可以减少到原来的 20%

checkpoint 参数验证

主要验证trigger机制保留机制

验证trigger机制

未设置trigger效果

未设置trigger前,spark structured streaming 的查询batch提交的周期截图如下:

每一个batch的query任务的提交是毫无周期规律可寻。

设置trigger代码

trigger效果

设置trigger代码后效果截图如下:

每一个batch的query任务的提交是有规律可寻的,即每隔5s提交一次代码,即trigger设置生效

注意,如果消息不能马上被消费,消息会有积压,structured streaming 目前并无与spark streaming效果等同的背压机制,为防止单批次query查询的数据源数据量过大,避免程序出现数据倾斜或者无法挽回的OutOfMemory错误,可以通过 maxOffsetsPerTrigger 参数来设置单个批次允许抓取的最大消息条数。

使用案例如下:

spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "xxx:9092")
.option("subscribe", "test-name")
.option("startingOffsets", "earliest")
.option("maxOffsetsPerTrigger", 1)
.option("group.id", "2")
.option("auto.offset.reset", "earliest")
.load()

验证保留机制

默认保留机制效果

spark任务提交参数

#!/bin/bash
spark-submit \
--class zd.Example \
--master yarn \
--deploy-mode client \
--packages org.apache.spark:spark-sql-kafka--10_2.:2.4.,org.apache.kafka:kafka-clients:2.0. \
--repositories http://maven.aliyun.com/nexus/content/groups/public/ \
/root/spark-test-1.0-SNAPSHOT.jar

如下图,offsets和commits最终最少各保留100个文件。

修改保留策略

通过修改任务提交参数来进一步修改checkpoint的保留策略。

添加 --conf spark.sql.streaming.minBatchesToRetain=2 ,完整脚本如下:

#!/bin/bash
spark-submit \
--class zd.Example \
--master yarn \
--deploy-mode client \
--packages org.apache.spark:spark-sql-kafka--10_2.:2.4.,org.apache.kafka:kafka-clients:2.0. \
--repositories http://maven.aliyun.com/nexus/content/groups/public/ \
--conf spark.sql.streaming.minBatchesToRetain= \
/root/spark-test-1.0-SNAPSHOT.jar

修改后保留策略效果

修改后保留策略截图如下:

即 checkpoint的保留策略参数设置生效

总结

综上,可以通过设置 trigger 来控制每一个batch的query提交的时间间隔,可以通过设置checkpoint文件最少保留batch的大小来减少checkpoint小文件的保留个数。

参照

  1. https://github.com/apache/spark/blob/master/docs/running-on-yarn.md
  2. https://blog.csdn.net/lm709409753/article/details/85250859
  3. https://github.com/apache/spark/blob/v2.4.3/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/MicroBatchExecution.scala
  4. https://github.com/apache/spark/blob/v2.4.3/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/continuous/ContinuousExecution.scala
  5. https://github.com/apache/spark/blob/v2.4.3/sql/core/src/main/scala/org/apache/spark/sql/streaming/ProcessingTime.scala
  6. https://github.com/apache/spark/blob/v2.4.3/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/continuous/ContinuousTrigger.scala
  7. https://github.com/apache/spark/blob/v2.4.3/sql/catalyst/src/main/scala/org/apache/spark/sql/internal/SQLConf.scala

spark 集群优化的更多相关文章

  1. Spark集群之yarn提交作业优化案例

    Spark集群之yarn提交作业优化案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.启动Hadoop集群 1>.自定义批量管理脚本 [yinzhengjie@s101 ...

  2. zhihu spark集群,书籍,论文

    spark集群中的节点可以只处理自身独立数据库里的数据,然后汇总吗? 修改 我将spark搭建在两台机器上,其中一台既是master又是slave,另一台是slave,两台机器上均装有独立的mongo ...

  3. 【Spark-core学习之三】 Spark集群搭建 & spark-shell & Master HA

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...

  4. Spark集群数据处理速度慢(数据本地化问题)

    SparkStreaming拉取Kafka中数据,处理后入库.整个流程速度很慢,除去代码中可优化的部分,也在spark集群中找原因. 发现: 集群在处理数据时存在移动数据与移动计算的区别,也有些其他叫 ...

  5. Spark集群环境搭建——部署Spark集群

    在前面我们已经准备了三台服务器,并做好初始化,配置好jdk与免密登录等.并且已经安装好了hadoop集群. 如果还没有配置好的,参考我前面两篇博客: Spark集群环境搭建--服务器环境初始化:htt ...

  6. (四)Spark集群搭建-Java&Python版Spark

    Spark集群搭建 视频教程 1.优酷 2.YouTube 安装scala环境 下载地址http://www.scala-lang.org/download/ 上传scala-2.10.5.tgz到m ...

  7. [bigdata] spark集群安装及测试

    在spark安装之前,应该已经安装了hadoop原生版或者cdh,因为spark基本要基于hdfs来进行计算. 1. 下载 spark:  http://mirrors.cnnic.cn/apache ...

  8. Spark集群部署

    Spark是通用的基于内存计算的大数据框架,可以和hadoop生态系统很好的兼容,以下来部署Spark集群 集群环境:3节点 Master:bigdata1 Slaves:bigdata2,bigda ...

  9. Spark集群 + Akka + Kafka + Scala 开发(3) : 开发一个Akka + Spark的应用

    前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境中,我们已经部署好了一个Spark的开发环境. 在Spark集群 + Akka + Kafka + S ...

随机推荐

  1. 一份从入门到精通NLP的完整指南 | NLPer

    该小博主介绍 本人:笔名zenRRan,方向自然语言处理,方法主要是深度学习. 未来的目标:人工智能之自然语言处理博士. 写公众号目的:将知识变成开源,让每个渴求知识而难以入门人工智能的小白以及想进阶 ...

  2. java——构造器理解

    构造器理解 什么是构造器 构造器也叫构造方法:用于对象的初始化: 写构造器注意事项 构造器名与类名一致:有返回值但是不能定义返回类型(返回值类型是本类,可以加一个空的return): 构造器的调用 通 ...

  3. coding++:TransactionDefinition 接口介绍

    TransactionDefinition类结构: 作用: 1.TransactionDefinition接口被用于Spring事物支持的核心PlatformTransactionManager接口, ...

  4. WeChat-SmallProgram:微信小程序中使用Async-await方法异步请求变为同步请求

    微信小程序中有些 Api 是异步的,无法直接进行同步处理.例如:wx.request.wx.showToast.wx.showLoading 等.如果需要同步处理,可以使用如下方法: 提示:Async ...

  5. gold 30min

  6. CSS躬行记(2)——伪类和伪元素

    一.伪类选择器 伪选择器弥补了常规选择器的不足,能够实现一些特殊情况下的样式,例如在鼠标悬停时或只给字符串中的第一个字符指定样式.与类选择器类似,可以从HTML元素的class属性中查看到,但伪选择器 ...

  7. Java IO流的写入和写出操作 FileInputStream和FileOutputStream

    今天学习了Java的IO流,关于文件的读入和写出,主要是FileInputStream和FileOutputStream来实现,这两个流是字节流.还有字符流(FileReader和FileWriter ...

  8. 掌握使用gitlab ci构建Android包的正确方式

    最近公司在做移动端的项目,自然而然的需要搭建打包的环境.本来计划用Jenkins的,但是发现在gitlab上创建完项目后,提示去配置pipeline,于是决定用gitlab去尝试下,毕竟我觉得Jenk ...

  9. 1006 Sign In and Sign Out (25 分)

    At the beginning of every day, the first person who signs in the computer room will unlock the door, ...

  10. 下载腾讯视频mp4格式

    import time import subprocess import argparse def command(cmd, timeout=60): ''' :param cmd: 执行命令cmd, ...