一个上午写了两个数据生成器,三个暴力和两个正解以及一个未竣工的伪正解思路

真是累死本宝宝了

首先这个题目暴力我的数据是有很多良心分的

但是不同的暴力拿到的分数也会有所差距,由于是题解就不说暴力怎么写了

首先第一种解法:

我们对f序列分块,预处理a序列中每个点在每个块内会被计算多少次

预处理的时候对于每个块把所有区间差分一下,然后O(N)扫一遍统计即可

考虑我们的查询,一定是若干单点和若干块

所以修改我们可以对f序列中所有的块暴力计算贡献

由于已经预处理过,所以这是很好解决的,这样我们就可以解决块的询问了

之后我们考虑对于单点的询问,显然就变成了求a序列的区间和

可以用树状数组在修改log,查询log的时间内完成

总时间复杂度O(n*sqrt(n)*logn)

但是我们可以做到更好,考虑我们实际上修改的次数较少,查询次数较多

所以我们可以采用sqrt(n)修改,O(1)查询的方式来维护

显然我们要对a序列分块,维护a序列的前缀和,每次修改等于把Si-Sn每个数加上一个数

查询的时候只需要返回 单点的值和块的值的和就可以了

这样总时间复杂度O(n*sqrt(n)),空间复杂度O(n*sqrt(n))

但是如果我丧心病狂一点,强行卡内存呢?

下面介绍第二种解法:

我们把询问离线,就可以把修改操作改成增量操作啦

这样贡献就被分离了,一个询问的答案等于块内贡献和之前块贡献的和

首先之前块的贡献的和我们可以通过每次暴力重构前缀和数组做到O(n*sqrt(n))的时间复杂度

块内贡献不是很好算,由于区间和具有可减性,我们可以把一个询问拆成两个前缀和询问

之后我们把所有询问按询问端点从小到大排序,扫每一个询问

之后扫这个询问块内的在它之前的修改来计算贡献,那么我们显然要知道这个修改的点要被计算多少次

我们可以在扫描过程中维护一个数据结构满足区间+1,查询单点值

用树状数组可以做到log修改,log查询,时间复杂度O(n*sqrt(n)*logn)

同理我们一样可以转化为sqrt(n)修改,O(1)查询,做法和上面的同理,对a序列分块即可

时间复杂度O(n*sqrt(n)),空间复杂度O(n)

但是如果我再丧心病狂一点,还要求强制在线呢?

这个题还是可做的,不过做法要多个log,如果谁有更好的做法欢迎与我联系

第三种解法:

我们考虑我们计算某个修改对某个询问的贡献的时候需要的信息

由于我们把询问拆成了前缀和询问,我们只需要知道在f序列中[1-i]这些的f值中ak被计算了多少次

在上一种做法中我们离线排序来计算的这些信息,需要维护的数据结构支持区间修改,单点查询

我们不妨差分一下,转化成单点修改,区间查询

然后我们就可以用可持久化线段树来预处理啦

之后我们读入询问,每sqrt(n)暴力重构一次前缀和,暴力扫块内之前操作计算贡献就可以啦

时间复杂度O(n*sqrt(n)*log(n)),空间复杂度O(n*logn)

这个做法貌似并不能在cojs上跑过去,不过也是一个蛮不错的idea

实测最后两个点会T掉,貌似时限在开大0.5s就能跑过去啦

UPD:对于第二种做法,目前比第一种做法要快

而且本人的写法比较辣鸡,如果第二种做法将修改和查询分开就会减少很多无用的扫描

可以减小常数,貌似可以跑的更快?不过代码量和细节肯定会增多QAQ

由于本人丧心病狂,已经卡了内存

cojs 简单的求和问题 解题报告的更多相关文章

  1. cojs 疯狂的求和问题 解题报告

    QAQ 好久不在cojs上出题了 最近学了点新科技,于是就做成题来分享了 这道题是要求simga(i^k) 那么就先说说部分分的算法吧: 10分: 直接暴力就可以了,时间复杂度O(nlogk) 30分 ...

  2. cojs 简单的区间问题 解题报告

    新学了些弦图和区间图的新玩意,于是就想着出一道题目 其实这道题不用弦图和区间图的理论也是可以做的 首先考虑第一问,第一问是一个NOIP普及组水平的贪心 我们把区间按照右端点从小到大排序,之后从头到尾扫 ...

  3. cojs 自己出的题目 解题报告

    省选成功成为河北B队队长QAQ 真是忧桑 所以在cojs上出了一套鬼畜的关于树的套题 黑白树: 我们先不考虑R操作 设x是u的祖先,那么fa(x)的贡献显然是 fa(x)*(sz(fa(x))-sz( ...

  4. cojs 简单的01串 题解报告

    题意显然是求n位二进制串中不大于其逆序串,取反串,逆序取反串的所有串按字典序排序后的第k个 由于n很小,k很大所以我们可以考虑逐位确定 问题转化为了求方案数,这显然是可以用数位DP做的 设f[len] ...

  5. cojs 简单的数位DP 题解报告

    首先这道题真的是个数位DP 我们考虑所有的限制: 首先第六个限制和第二个限制是重复的,保留第二个限制即可 第五个限制在转移中可以判断,不用放在状态里 对于第一个限制,我们可以增加一维表示余数即可 对于 ...

  6. 2011 ACM-ICPC 成都赛区解题报告(转)

    2011 ACM-ICPC 成都赛区解题报告 首先对F题出了陈题表示万分抱歉,我们都没注意到在2009哈尔滨赛区曾出过一模一样的题.其他的话,这套题还是非常不错的,除C之外的9道题都有队伍AC,最终冠 ...

  7. 夏令营提高班上午上机测试 Day 4 解题报告

    我要是没记错的话,今天的题难度算挺适中的. *标程来自高天宇哥哥 T1:小G的字符串 题目描述 有一天,小 L 给小 G 出了这样一道题:生成一个长度为 n 的.全由小写英文字母构成的字符串,只能使用 ...

  8. CYJian的水题大赛2 解题报告

    这场比赛是前几天洛谷上 暮雪﹃紛紛dalao的个人公开赛,当时基本上都在水暴力分......也没有好好写正解(可能除了T1) 过了几天颓废的日子之后,本蒟蒻觉得应该卓越一下了qwq,所以就打算写一个解 ...

  9. 2016 第七届蓝桥杯 c/c++ B组省赛真题及解题报告

    2016 第七届蓝桥杯 c/c++ B组省赛真题及解题报告 勘误1:第6题第4个 if最后一个条件粗心写错了,答案应为1580. 条件应为abs(a[3]-a[7])!=1,宝宝心理苦啊.!感谢zzh ...

随机推荐

  1. linux下配置tomcat7 + solr4.9(续)--- 多核索引的配置

    在上一篇文章中(详见http://www.cnblogs.com/bxljoy/p/3850263.html),我们已经介绍了tomcat+solr的索引服务器的配置,但是文中创建的服务器只能支持存储 ...

  2. PHP获取和操作配置文件php.ini的几个函数

    当无法修改php.ini配置文件怎么办,莫担心. php有一套设置和获取配置信息的函数. 1.ini_get()获取配置参数,ini_set()设置配置参数 <?php

  3. 如何使用js捕获css3动画

    如何使用js捕获css3动画 css3动画功能强大,但是不像js,没有逐帧控制,但是可以通过js事件来确定任何动画的状态. 下面是一段css3动画代码: #anim.enable{ -webkit-a ...

  4. Python编码与解码

    # -*- coding: utf-8 -*- # 直接保存为Python脚本,对照执行结果会好看点. # 实验的内容都是在Python 2.7.x下进行的. # Python3默认采用unicode ...

  5. c#中的类型转换

    Parse类型转换 Parse()函数 int.double都能调用Parse()函数,Parse(string str);如果转换成功就成功,失败就会抛出一个异常; TryParse()函数 相应地 ...

  6. .Net码农学Android---系统架构和基本概念

    至此,你应该已经完成以下前期准备事情: 1.安装完JDK 2.安装完SDK(并在Manager中进行相关版本的更新) 3.相关IDE(如eclipse) 4.安装完ADT 5.安装完AVD(如果你是真 ...

  7. 一个Java对象到底占用多大内存

    在网上搜到了一篇博客讲的非常好,里面提供的这个类也非常实用: import java.lang.instrument.Instrumentation; import java.lang.reflect ...

  8. Vim Cscope安装与使用

    问题描述:        Cscope是VIM适用的工具和插件,通过Cscope可以方便的获取某个函数的定义以及被那些函数调用 问题解决:         (1)Cscope安装    注:      ...

  9. 【BZOJ】【2190】【SDOI2008】仪仗队

    欧拉函数/莫比乌斯函数 Orz iwtwiioi 这个嘛……很明显在同一条线上的两个点一定是满足  x1*k=x2,y1*k=y2,(好吧这个表示方式有点傻逼,懂得就好了)那么这条线上的点只有第一个会 ...

  10. C++ 面试题整理

    我和朋友们面到的c++试题整理 虚表 static const sizeof 可构造不可继承的类 stl Iterator失效 map vector vector的removed_if 优化 ---- ...