题目链接:洛谷

题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$。求 $\sum^r_{i=l}f(i)\ mod\ 998244353$。

$1\leq l\leq r\leq 1.6\times 10^{14}$。


阅读以下内容前请先学会前置技能整除分块

先分析一下 $f(x)$ 的本质。

(读者:不要啰嗦来啰嗦去的好吧!这明显是 $x$ 的约数个数吗!是不是想拖延时间?)

好好好,你赢了。我们来看看如何计算。

看到区间 $[l,r]$ 函数求和,我们应该想到拆成前缀和 $pre(r)-pre(l-1)$。

现在看一看 $pre(x)=\sum^x_{i=1}f(i)$ 如何计算。

我们这样考虑:

$1\sim x$ 中有 $\lfloor\frac{x}{1}\rfloor$ 个 $1$ 的倍数,也就是有 $\lfloor\frac{x}{1}\rfloor$ 个数有约数 $1$。

同理有 $\lfloor\frac{x}{2}\rfloor$ 个数有约数 $2$。

有 $\lfloor\frac{x}{3}\rfloor$ 个数有约数 $3$。

$\dots\dots$

有 $\lfloor\frac{x}{i}\rfloor$ 个数有约数 $i$。

所以 $pre(x)=\sum^x_{i=1}\lfloor\frac{x}{i}\rfloor$。

这个……不就是整除分块模板了吗?

对于一段如何求和难度应该不大,可以自己推出来。

(读者:喂,别这么不良心好吧!)

好吧,$[l,r]$ 这段区间的和为 $\lfloor\frac{x}{l}\rfloor(r-l+1)$。

时间复杂度 $O(\sqrt{r})$,空间复杂度 $O(1)$。


既然是模板题一道,那就直接上代码。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=;
ll l,r;
ll solve(ll x){ //整除分块
ll ans=;
for(ll l=,r;l<=x;l=r+){
r=x/(x/l); //左边界推算右边界
ans=(ans+(r-l+)*(x/l))%mod; //求和
}
return ans;
}
int main(){
scanf("%lld%lld",&l,&r);
printf("%lld\n",((solve(r)-solve(l-))%mod+mod)%mod); //前缀和相减
}

整除分块

洛谷P3935 Calculating(整除分块)的更多相关文章

  1. 洛谷 - P3935 - Calculating - 整除分块

    https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...

  2. 洛谷P3935 Calculating (莫比乌斯反演)

    P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...

  3. [洛谷P3935]Calculating

    题目大意:设把$x$分解质因数的结果为$x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$,令$f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$,求$\su ...

  4. [P3935] Calculating - 整除分块

    容易发现题目要求的 \(f(x)\) 就是 \(x\) 的不同因子个数 现在考虑如何求 \(\sum_{i=1}^n f(i)\),可以考虑去算每个数作为因子出现了多少次,很容易发现是 \([n/i] ...

  5. 洛谷 P3935 Calculating 题解

    原题链接 一看我感觉是个什么很难的式子-- 结果读完了才发现本质太简单. 算法一 完全按照那个题目所说的,真的把质因数分解的结果保留. 最后乘. 时间复杂度:\(O(r \sqrt{r})\). 实际 ...

  6. 洛谷 P3935 Calculating

    虽然对这道题没有什么帮助,但是还是记一下:约数个数也是可以线性筛的 http://www.cnblogs.com/xzz_233/p/8365414.html 测正确性题目:https://www.l ...

  7. 洛谷P3935 Calculation [数论分块]

    题目传送门 格式难调,题面就不放了. 分析: 实际上这个就是这道题的升级版,没什么可讲的,数论分块搞就是了. Code: //It is made by HolseLee on 18th Jul 20 ...

  8. 洛谷P4198 楼房重建 (分块)

    洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...

  9. 洛谷P4135 作诗 (分块)

    洛谷P4135 作诗 题目描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章 ...

随机推荐

  1. Maven私有仓库-使用docker部署Nexus

    查看官方镜像说明 nexus2 nexus3 建议使用nexus2,可能网上的资料这个版本居多. 我选择的是nexus3,~~~ 启动容器 官方说明中提到的是使用docker直接启动.我选择用dock ...

  2. spring boot项目配置RestTemplate超时时长

    配置类: @Configuration public class FeignConfiguration { @Bean(name="remoteRestTemplate") pub ...

  3. 20155202张旭 Exp5 MSF基础应用

    20155202张旭 Exp5 MSF基础应用 实践内容 本次实验我使用的攻击方式: 1.针对office软件的主动攻击:--MS10-087: 2.MS10-002漏洞对浏览器攻击 3.针对客户端的 ...

  4. [hdu5503]EarthCup[霍尔定理]

    题意 一共 \(n\) 只球队,两两之间会进行一场比赛,赢得一分输不得分,给出每只球队最后的得分,问能否构造每场比赛的输赢情况使得得分成立.多组数据 \(T\le 10,n\le 5\times 10 ...

  5. centos7 php性能调优

    php-ini优化 vi /etc/php.ini 打开php的安全模式,控制php执行危险函数, 默认是Off,改为On sql.safe_mode = Off 关闭php头部信息, 隐藏版本号, ...

  6. 软件测试_Loadrunner_APP测试_性能测试_脚本优化_脚本回放

    本文主要写一下在使用Loadrunner录制完毕APP脚本之后如何对脚本进行回放,如有不足,欢迎评论补充. 如没有安装Loadrunner软件,请查看链接:软件测试_测试工具_LoadRunner: ...

  7. Scrapy持久化存储

    基于终端指令的持久化存储 保证爬虫文件的parse方法中有可迭代类型对象(通常为列表or字典)的返回,该返回值可以通过终端指令的形式写入指定格式的文件中进行持久化操作; 执行输出指定格式进行存储:将爬 ...

  8. Bloom Filter解析

    布隆过滤器简介:https://www.cnblogs.com/Jack47/p/bloom_filter_intro.html 布隆过滤器详解:原文链接:http://www.cnblogs.com ...

  9. 基于Activiti工作流引擎实现的请假审核流程

    概要 本文档介绍的是某商用中集成的Activiti工作流的部署及使用,该框架用的Activiti版本为5.19.0.本文档中主要以一个请假流程为例子进行说明,该例子的流程图如下: 这是一个可以正常运作 ...

  10. Beta阶段冲刺-6

    一. 每日会议 1. 照片 2. 昨日完成工作 3. 今日完成工作 4. 工作中遇到的困难 杨晨露:各种问题,虽然都是开发上面的问题,但是都提出来就有点头大了. 戴志斌:对小程序公众号的开发不了解,因 ...