题目链接:洛谷

题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$。求 $\sum^r_{i=l}f(i)\ mod\ 998244353$。

$1\leq l\leq r\leq 1.6\times 10^{14}$。


阅读以下内容前请先学会前置技能整除分块

先分析一下 $f(x)$ 的本质。

(读者:不要啰嗦来啰嗦去的好吧!这明显是 $x$ 的约数个数吗!是不是想拖延时间?)

好好好,你赢了。我们来看看如何计算。

看到区间 $[l,r]$ 函数求和,我们应该想到拆成前缀和 $pre(r)-pre(l-1)$。

现在看一看 $pre(x)=\sum^x_{i=1}f(i)$ 如何计算。

我们这样考虑:

$1\sim x$ 中有 $\lfloor\frac{x}{1}\rfloor$ 个 $1$ 的倍数,也就是有 $\lfloor\frac{x}{1}\rfloor$ 个数有约数 $1$。

同理有 $\lfloor\frac{x}{2}\rfloor$ 个数有约数 $2$。

有 $\lfloor\frac{x}{3}\rfloor$ 个数有约数 $3$。

$\dots\dots$

有 $\lfloor\frac{x}{i}\rfloor$ 个数有约数 $i$。

所以 $pre(x)=\sum^x_{i=1}\lfloor\frac{x}{i}\rfloor$。

这个……不就是整除分块模板了吗?

对于一段如何求和难度应该不大,可以自己推出来。

(读者:喂,别这么不良心好吧!)

好吧,$[l,r]$ 这段区间的和为 $\lfloor\frac{x}{l}\rfloor(r-l+1)$。

时间复杂度 $O(\sqrt{r})$,空间复杂度 $O(1)$。


既然是模板题一道,那就直接上代码。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=;
ll l,r;
ll solve(ll x){ //整除分块
ll ans=;
for(ll l=,r;l<=x;l=r+){
r=x/(x/l); //左边界推算右边界
ans=(ans+(r-l+)*(x/l))%mod; //求和
}
return ans;
}
int main(){
scanf("%lld%lld",&l,&r);
printf("%lld\n",((solve(r)-solve(l-))%mod+mod)%mod); //前缀和相减
}

整除分块

洛谷P3935 Calculating(整除分块)的更多相关文章

  1. 洛谷 - P3935 - Calculating - 整除分块

    https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...

  2. 洛谷P3935 Calculating (莫比乌斯反演)

    P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...

  3. [洛谷P3935]Calculating

    题目大意:设把$x$分解质因数的结果为$x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$,令$f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$,求$\su ...

  4. [P3935] Calculating - 整除分块

    容易发现题目要求的 \(f(x)\) 就是 \(x\) 的不同因子个数 现在考虑如何求 \(\sum_{i=1}^n f(i)\),可以考虑去算每个数作为因子出现了多少次,很容易发现是 \([n/i] ...

  5. 洛谷 P3935 Calculating 题解

    原题链接 一看我感觉是个什么很难的式子-- 结果读完了才发现本质太简单. 算法一 完全按照那个题目所说的,真的把质因数分解的结果保留. 最后乘. 时间复杂度:\(O(r \sqrt{r})\). 实际 ...

  6. 洛谷 P3935 Calculating

    虽然对这道题没有什么帮助,但是还是记一下:约数个数也是可以线性筛的 http://www.cnblogs.com/xzz_233/p/8365414.html 测正确性题目:https://www.l ...

  7. 洛谷P3935 Calculation [数论分块]

    题目传送门 格式难调,题面就不放了. 分析: 实际上这个就是这道题的升级版,没什么可讲的,数论分块搞就是了. Code: //It is made by HolseLee on 18th Jul 20 ...

  8. 洛谷P4198 楼房重建 (分块)

    洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...

  9. 洛谷P4135 作诗 (分块)

    洛谷P4135 作诗 题目描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章 ...

随机推荐

  1. WPF Good UI

          <Window x:Class="WpfApplication1.Window1" xmlns="http://schemas.microsoft.co ...

  2. 20155206《网络对抗》Web安全基础实践

    20155206<网络对抗>Web安全基础实践 实验后问题回答 (1)SQL注入攻击原理,如何防御 攻击原理:SQL注入攻击就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查 ...

  3. WPF编程,通过Path类型制作沿路径运动的动画另一种方法。

    原文:WPF编程,通过Path类型制作沿路径运动的动画另一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/d ...

  4. CLR回收非托管资源

    一.非托管资源 在<垃圾回收算法之引用计数算法>.<垃圾回收算法之引用跟踪算法>和<垃圾回收算法之引用跟踪算法>这3篇文章中,我们介绍了垃圾回收的一些基本概念和原理 ...

  5. Java技术——String类为什么是不可变的

    0. 前言   如果一个对象,在它创建完成之后不能再改变它的状态,包括对象内的成员变量.基本数据类型的值等等.那么这个对象就是不可变的.众所周知String类就是不可变的.转载请注明出处为SEU_Ca ...

  6. vs编译器好多下划波浪线但不报错

    解决办法:项目属性->c/c++->常规->附加包含目录->$(ProjectDir): $(ProjectDir) 项目的目录(定义形式:驱动器 + 路径):包括尾部的反斜杠 ...

  7. [CF1009G]Allowed Letters[贪心+霍尔定理]

    题意 给你一个长为 \(n\) 的串,字符集为 \(a,b,c,d,e,f\) .你可以将整个串打乱之后重新放置,但是某些位置上有一些限制:必须放某个字符集的字符.问字典序最小的串,如果无解输出 &q ...

  8. Zabbix使用总结

    1. CentOS 7上启动zabbix-server失败,/var/log/messages中的报错信息如下: Feb :: mysql-server1 systemd: Starting Zabb ...

  9. 火狐浏览器之伪造IP地址

    前言: 前段时间,测试过程中需要伪造来源IP地址,百思不得其解,因而发现火狐浏览器的这个Modify Headers插件,十分好用,推荐给大家. 步骤: 1.安装插件Modify Headers 进入 ...

  10. request.getParameter中文乱码问题解决办法

    new String(request.getParameter("pageNo").getBytes("ISO-8859-1"),"UTF-8&quo ...