【问题解决方案】Keras手写数字识别-ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接
参考:
台大李宏毅老师视频课程-Keras-Demo
调参博文1:深度学习入门实践_十行搭建手写数字识别神经网络
调参博文2:手写数字识别---demo(有小错误)
编程环境:
操作系统:win7 - CPU
anaconda-Python3-jupyter notebook
tersonFlow:1.10.0
Keras:2.2.4
背景
Keras实现手写数字识别,在载入数据阶段报错:
ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接


问题解决步骤:
1-去官网下载数据集
2-编写独立的载入数据模块以便主程序引用
3-在主程序进行相应的修改
4-测试运行是否正常
5-数组过大的新问题与梯子解决
1-去官网下载数据集:
数据集网址(宝可梦大师课程里也有提到过):http://yann.lecun.com/exdb/mnist/

2-编写独立的载入数据模块以便主程序引用
将如下代码另存为一个文件
load_data.py,后面直接import使用(代码来自调参博文1)数据集放在代码文件所在目录下
注意文件路径格式
# encoding: utf-8
"""
对MNIST手写数字数据文件转换为bmp图片文件格式。
数据集下载地址为http://yann.lecun.com/exdb/mnist。
相关格式转换见官网以及代码注释。
========================
关于IDX文件格式的解析规则:
========================
THE IDX FILE FORMAT
the IDX file format is a simple format for vectors and multidimensional matrices of various numerical types.
The basic format is
magic number
size in dimension 0
size in dimension 1
size in dimension 2
.....
size in dimension N
data
The magic number is an integer (MSB first). The first 2 bytes are always 0.
The third byte codes the type of the data:
0x08: unsigned byte
0x09: signed byte
0x0B: short (2 bytes)
0x0C: int (4 bytes)
0x0D: float (4 bytes)
0x0E: double (8 bytes)
The 4-th byte codes the number of dimensions of the vector/matrix: 1 for vectors, 2 for matrices....
The sizes in each dimension are 4-byte integers (MSB first, high endian, like in most non-Intel processors).
The data is stored like in a C array, i.e. the index in the last dimension changes the fastest.
"""
import numpy as np
import struct
import matplotlib.pyplot as plt
# 训练集文件
train_images_idx3_ubyte_file = './data/train-images-idx3-ubyte'
# 训练集标签文件
train_labels_idx1_ubyte_file = './data/train-labels-idx1-ubyte'
# 测试集文件
test_images_idx3_ubyte_file = './data/t10k-images-idx3-ubyte'
# 测试集标签文件
test_labels_idx1_ubyte_file = './data/t10k-labels-idx1-ubyte'
def decode_idx3_ubyte(idx3_ubyte_file):
"""
解析idx3文件的通用函数
:param idx3_ubyte_file: idx3文件路径
:return: 数据集
"""
# 读取二进制数据
bin_data = open(idx3_ubyte_file, 'rb').read()
# 解析文件头信息,依次为魔数、图片数量、每张图片高、每张图片宽
offset = 0
fmt_header = '>iiii'
magic_number, num_images, num_rows, num_cols = struct.unpack_from(fmt_header, bin_data, offset)
#print('魔数:%d, 图片数量: %d张, 图片大小: %d*%d' % (magic_number, num_images, num_rows, num_cols))
# 解析数据集
image_size = num_rows * num_cols
offset += struct.calcsize(fmt_header)
fmt_image = '>' + str(image_size) + 'B'
images = np.empty((num_images, num_rows, num_cols))
for i in range(num_images):
#if (i + 1) % 10000 == 0:
#print('已解析 %d' % (i + 1) + '张')
images[i] = np.array(struct.unpack_from(fmt_image, bin_data, offset)).reshape((num_rows, num_cols))
offset += struct.calcsize(fmt_image)
return images
def decode_idx1_ubyte(idx1_ubyte_file):
"""
解析idx1文件的通用函数
:param idx1_ubyte_file: idx1文件路径
:return: 数据集
"""
# 读取二进制数据
bin_data = open(idx1_ubyte_file, 'rb').read()
# 解析文件头信息,依次为魔数和标签数
offset = 0
fmt_header = '>ii'
magic_number, num_images = struct.unpack_from(fmt_header, bin_data, offset)
#print('魔数:%d, 图片数量: %d张' % (magic_number, num_images))
# 解析数据集
offset += struct.calcsize(fmt_header)
fmt_image = '>B'
labels = np.empty(num_images)
for i in range(num_images):
#if (i + 1) % 10000 == 0:
# print('已解析 %d' % (i + 1) + '张')
labels[i] = struct.unpack_from(fmt_image, bin_data, offset)[0]
offset += struct.calcsize(fmt_image)
return labels
def load_train_images(idx_ubyte_file=train_images_idx3_ubyte_file):
"""
TRAINING SET IMAGE FILE (train-images-idx3-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000803(2051) magic number
0004 32 bit integer 60000 number of images
0008 32 bit integer 28 number of rows
0012 32 bit integer 28 number of columns
0016 unsigned byte ?? pixel
0017 unsigned byte ?? pixel
........
xxxx unsigned byte ?? pixel
Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).
:param idx_ubyte_file: idx文件路径
:return: n*row*col维np.array对象,n为图片数量
"""
return decode_idx3_ubyte(idx_ubyte_file)
def load_train_labels(idx_ubyte_file=train_labels_idx1_ubyte_file):
"""
TRAINING SET LABEL FILE (train-labels-idx1-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000801(2049) magic number (MSB first)
0004 32 bit integer 60000 number of items
0008 unsigned byte ?? label
0009 unsigned byte ?? label
........
xxxx unsigned byte ?? label
The labels values are 0 to 9.
:param idx_ubyte_file: idx文件路径
:return: n*1维np.array对象,n为图片数量
"""
return decode_idx1_ubyte(idx_ubyte_file)
def load_test_images(idx_ubyte_file=test_images_idx3_ubyte_file):
"""
TEST SET IMAGE FILE (t10k-images-idx3-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000803(2051) magic number
0004 32 bit integer 10000 number of images
0008 32 bit integer 28 number of rows
0012 32 bit integer 28 number of columns
0016 unsigned byte ?? pixel
0017 unsigned byte ?? pixel
........
xxxx unsigned byte ?? pixel
Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).
:param idx_ubyte_file: idx文件路径
:return: n*row*col维np.array对象,n为图片数量
"""
return decode_idx3_ubyte(idx_ubyte_file)
def load_test_labels(idx_ubyte_file=test_labels_idx1_ubyte_file):
"""
TEST SET LABEL FILE (t10k-labels-idx1-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000801(2049) magic number (MSB first)
0004 32 bit integer 10000 number of items
0008 unsigned byte ?? label
0009 unsigned byte ?? label
........
xxxx unsigned byte ?? label
The labels values are 0 to 9.
:param idx_ubyte_file: idx文件路径
:return: n*1维np.array对象,n为图片数量
"""
return decode_idx1_ubyte(idx_ubyte_file)
def run():
train_images = load_train_images()
train_labels = load_train_labels()
test_images = load_test_images()
test_labels = load_test_labels()
# 查看前十个数据及其标签以读取是否正确
for i in range(10):
print(train_labels[i])
plt.imshow(train_images[i], cmap='gray')
plt.show()
print('done')
if __name__ == '__main__':
run()
3-在主程序进行相应的修改
由原来的
from keras.datasets..修改为from load_data import *

数据预处理部分相应的修改:

4-测试运行是否正常
报错:找不到文件路径

继续报错:ValueError: array is too big; `arr.size * arr.dtype.itemsize` is larger than the maximum possible size.

5-数组过大的问题搜了很多也解决不了,转而求助于梯子后用原方法载入数据
因为上面的路子已经卡死了,过大的问题解决不了进行不下去了,希望可以成功把数据载入...

成功了啊!!!! 感天动地!!!! 梯子万岁!!!!!

梯子心得:只要梯子没问题,可以多试几次,最终都会成功的,太赞啦~~
总结:
这个问题的本质是墙的问题,只有梯子够高够稳,其实不用以上这么麻烦
END
【问题解决方案】Keras手写数字识别-ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接的更多相关文章
- selenium webdriver报错 ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接。
昨天跑的好好的代码,今天突然报错: ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接. 调查一下,原来是Chrome自动升级,而chrom ...
- python 爬虫过程中出现:ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接
参考: https://blog.csdn.net/illegalname/article/details/77164521
- 100天搞定机器学习|day39 Tensorflow Keras手写数字识别
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...
- keras手写数字识别
import kerasimport timefrom keras.utils import np_utils start = time.time()(x_train, y_train), (x_te ...
- 【机器学习】李宏毅机器学习-Keras-Demo-神经网络手写数字识别与调参
参考: 原视频:李宏毅机器学习-Keras-Demo 调参博文1:深度学习入门实践_十行搭建手写数字识别神经网络 调参博文2:手写数字识别---demo(有小错误) 代码链接: 编程环境: 操作系统: ...
- 手写数字识别---demo
数据准备 课程中获取数据的方法是从库中直接load_data from keras.datasets import mnist (x_train, y_train), (x_test, y_test) ...
- 深度学习之 mnist 手写数字识别
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...
- 第三节,CNN案例-mnist手写数字识别
卷积:神经网络不再是对每个像素做处理,而是对一小块区域的处理,这种做法加强了图像信息的连续性,使得神经网络看到的是一个图像,而非一个点,同时也加深了神经网络对图像的理解,卷积神经网络有一个批量过滤器, ...
- Pytorch入门——手把手教你MNIST手写数字识别
MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNI ...
随机推荐
- python 中 __name__ 的使用
1. 如果模块是被导入,__name__的值为模块名字2. 如果模块是被直接执行,__name__的值为’__main__’ Py1.py #!/usr/bin/env python def te ...
- 苹果电脑thunderbolt连接两台电脑启动方法
thunderbolt:首先连接连台电脑 然后开启可以启动的电脑, 关闭无法启动的电脑. 接着 按一下法启动的电脑电源—> 然后按t键 会在另外一台可以启动的电脑上出现,无法启动电脑的磁盘. 就 ...
- 响应式布局(css,js,php等方法),根据媒体类型设计不同的样式,css在线手册
[css3在线手册]http://css.doyoe.com/ http://blog.csdn.net/duchao123duchao/article/details/52638506 [根据判断 ...
- linux下的wireshark最新版安装(源码安装)以及一些常见问题
源码安装教程 http://www.cnblogs.com/littleTing/p/3765589.html 1.下载wireshark: 网址:http://www.wireshark.org/d ...
- arguments[0]()的详解
var length = 10; function fn(){ console.log(this.length); } var obj = { length:5, method:function(fn ...
- 词袋模型(BOW, bag of words)
词集模型:单词构成的集合,每个单词只出现一次. 词袋模型:把每一个单词都进行统计,同时计算每个单词出现的次数. 在train_x中,总共有6篇文档,每一行代表一个样本即一篇文档.我们的目标是将trai ...
- canvas画的时钟
结合几天来学习的canvas的API,终于完成了一个时钟呵呵 html <!doctype html> <html> <head> <meta charset ...
- 动态生成PictureBox控件,涉及:PictureBox控件和flowLayoutPanel面板
一.概述 flowLayoutPanel面板是一系列控件的容器,有关详细的使用方法留待以后总结. 二.问题提出 问题提出:点击按钮,扫描指定文件夹并将其中的所有图片放在flowLayoutPanel面 ...
- MIT molecular Biology 笔记11 位点特异性重组 和 DNA转座
位点特异性重组 和 DNA转座 视频 https://www.bilibili.com/video/av7973580/ 教材 Molecular biology of the gene 7th ed ...
- Ng第三课:线性代数回顾(Linear Algebra Review)
3.1 矩阵和向量 3.2 加法和标量乘法 3.3 矩阵向量乘法 3.4 矩阵乘法 3.5 矩阵乘法的性质 3.6 逆.转置 3.1 矩阵和向量 如图:这个是 4×2 矩阵,即 4 行 ...