4774: 修路

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 290  Solved: 137
[Submit][Status][Discuss]

Description

村子间的小路年久失修,为了保障村子之间的往来,法珞决定带领大家修路。对于边带权的无向图 G = (V, E),
请选择一些边,使得1 <= i <= d, i号节点和 n - i + 1 号节点可以通过选中的边连通,最小化选中的所有边
的权值和。
 

Input

第一行两个整数 n, m,表示图的点数和边数。接下来的 m行,每行三个整数 ui, vi, wi,表示有一条 ui 与 vi 
之间,权值为 wi 的无向边。
1 <= d <= 4
2d <= n <= 10^4
0 <= m <= 10^4
1 <= ui, vi <= n
1 <= wi <= 1000

Output

一行一个整数,表示答案,如果无解输出-1

Sample Input

10 20 1
6 5 1
6 9 4
9 4 2
9 4 10
6 1 2
2 3 6
7 6 10
5 7 1
9 7 2
5 9 10
1 6 8
4 7 4
5 7 1
2 6 9
10 10 6
8 7 2
10 9 10
1 2 4
10 1 8
9 9 7

Sample Output

8
分析:斯坦纳树模板题.维护数组f[i][j]表示从i出发,使得状态为j的最小花费,这里的状态是用二进制表示的:01010101之类的,如果第i位为1,表示第i号点已经被连通.再维护一个数组g[i],表示状态为j的最小花费,这里就不管是从哪个点出发了.g[j] = min{f[i][j]}.
         最后更新g[i]用i的子集更新.若i的子集j满足条件(如果点p连通了,那么点p+d也连通),并且j^i也满足条件,就更新g[i].为什么要判断是否满足条件才能更新呢?例子:
,上下之间的点都是要配对的,如果直接合并了,则可能不配对.

最后输出答案g[1 << (2 * d) - 1].
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ,inf = 0x7ffffff; int n,m,d,head[maxn],to[maxn],nextt[maxn],w[maxn],tot = ,f[maxn][ << ],g[ << ],maxx,vis[maxn],dis[maxn];
queue <int> q; void add(int x,int y,int z)
{
w[tot] = z;
to[tot] = y;
nextt[tot] = head[x];
head[x] = tot++;
} void spfa(int sta)
{
memset(vis,,sizeof(vis));
queue <int> q;
for (int i = ; i <= n; i++)
{
q.push(i);
vis[i] = ;
}
while (!q.empty())
{
int u = q.front();
q.pop();
vis[u] = ;
for (int i = head[u];i;i = nextt[i])
{
int v = to[i];
if (f[v][sta] > f[u][sta] + w[i])
{
f[v][sta] = f[u][sta] + w[i];
if (!vis[v])
{
vis[v] = ;
q.push(v);
}
}
}
}
} bool check(int sta)
{
for (int i = ; i < d; i++)
{
int temp = << i;
if (sta & temp)
{
int temp2 = << (i + d);
if (!(sta & temp2))
return false;
}
temp = << (i + d);
if (sta & temp)
{
int temp2 = << i;
if (!(sta & temp2))
return false;
}
}
return true;
} int main()
{
scanf("%d%d%d",&n,&m,&d);
for (int i = ; i <= m; i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
maxx = ( << ( * d));
for (int i = ; i <= n; i++)
for (int j = ; j < maxx; j++)
f[i][j] = inf,g[j] = inf;
for (int i = ; i <= d; i++)
{
f[i][ << (i - )] = ;
f[n - i + ][ << (d + i - )] = ;
} for (int j = ; j < maxx; j++)
{
for (int i = ; i <= n; i++)
{
for (int k = j; k; k = (k - ) & j)
f[i][j] = min(f[i][j],f[i][k] + f[i][j ^ k]);
}
spfa(j);
for (int i = ; i <= n; i++)
g[j] = min(g[j],f[i][j]);
}
for (int i = ; i < maxx; i++)
for (int j = i; j; j = (j - ) & i)
if (check(j) && check(i ^ j))
g[i] = min(g[i],g[j] + g[j ^ i]);
if (g[maxx - ] < inf)
printf("%d\n",g[maxx - ]);
else
puts("-1"); return ;
}

bzoj4774 修路的更多相关文章

  1. 初涉斯坦纳树&&bzoj4774: 修路

    斯坦纳树的基础应用 斯坦纳树有什么用 个人一点粗浅理解…… 最基本形式的斯坦纳树问题(以下简称母问题):给定图G和一个关键点集V.求在G中选取一个权值最小(这里权值可以有很多变式)的边集E使V中的点两 ...

  2. 【BZOJ4774】修路(动态规划,斯坦纳树)

    [BZOJ4774]修路(动态规划,斯坦纳树) 题面 BZOJ 题解 先讲怎么求解最小斯坦纳树. 先明白什么是斯坦纳树. 斯坦纳树可以认为是最小生成树的一般情况.最小生成树是把所有给定点都要加入到联通 ...

  3. 【BZOJ4774/4006】修路/[JLOI2015]管道连接 斯坦纳树

    [BZOJ4774]修路 Description 村子间的小路年久失修,为了保障村子之间的往来,法珞决定带领大家修路.对于边带权的无向图 G = (V, E),请选择一些边,使得1 <= i & ...

  4. 【BZOJ4774】修路 [斯坦纳树]

    修路 Time Limit: 20 Sec  Memory Limit: 256 MB Description Input Output 仅一行一个整数表示答案. Sample Input 5 5 2 ...

  5. LA 5713 秦始皇修路 MST

    题目链接:http://vjudge.net/contest/144221#problem/A 题意: 秦朝有n个城市,需要修建一些道路使得任意两个城市之间都可以连通.道士徐福声称他可以用法术修路,不 ...

  6. hunnu 修路

    ing········ 这题我一眼就想到二分修路的长度 可是还有一个问题,有个费用,如果没有的话就所有的边都连起来判断能否二分到最小可行的 可是,有费用... 怎么做呢... ... 有了费用后,就不 ...

  7. UVALive 5713 Qin Shi Huang's National Road System秦始皇修路(MST,最小瓶颈路)

    题意: 秦始皇要在n个城市之间修路,而徐福声可以用法术位秦始皇免费修1条路,每个城市还有人口数,现要求徐福声所修之路的两城市的人口数之和A尽量大,而使n个城市互通需要修的路长B尽量短,从而使得A/B最 ...

  8. nyoj 118 修路方案(最小生成树删边求多个最小生成树)

    修路方案 时间限制:3000 ms  |  内存限制:65535 KB 难度:5   描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修 ...

  9. 修路方案(nyoj)

    算法:次小生成树 描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路. 现在已经知道哪些城市之间可以修路,如果修路,花费是多少. 现在 ...

随机推荐

  1. Spring学习(3):Spring概述(转载)

    1. Spring是什么? Spring是一个开源的轻量级Java SE(Java 标准版本)/Java EE(Java 企业版本)开发应用框架,其目的是用于简化企业级应用程序开发. 在面向对象思想中 ...

  2. .net mvc5 不同view()的视图 代码

    public class Test { public int id { set; get; } public string name { set; get; } } public ActionResu ...

  3. Thymeleaf教程【转】

    作者:不做浮躁的人 转自:http://www.blogjava.net/bjwulin/archive/2013/02/07/395234.html PS:其他推荐教程地址 http://blog. ...

  4. Centos7 Zabbix添加主机、图形、触发器

    制作自定义key zabbix自带模板Template OS Linux (Template App Zabbix Agent)提供CPU.内存.磁盘.网卡等常规监控,只要新加主机关联此模板,就可自动 ...

  5. Java中的Object类的toString()方法,equals()方法

    Object类是所有类的父类,若没有明确使用extends关键字明确表示该类继承哪个类,那么它就默认继承Object类,也就可以使用Object中的方法: 1.toString 如果输出一个对象的时候 ...

  6. webService —— soap

    package soupTest; import javax.jws.WebMethod; import javax.jws.WebService; import javax.xml.ws.Endpo ...

  7. java下执行mongodb

    1.1连单台mongodb Mongo mg = newMongo();//默认连本机127.0.0.1  端口为27017 Mongo mg = newMongo(ip);//可以指定ip 端口默认 ...

  8. iOS- Swift:如何使用iOS8中的UIAlertController

    1.前言 在前段时间手机QQ:升级iOS8.3后,发图就崩的情况, 就是因为iOS8更新UIAlertController后,仍然使用UIAlertview导致的 具体原因分析 这个可以看腾讯团队发出 ...

  9. find . -name file -exec echo abc > {} \; fail

    find . -name file -exec echo abc > {} \; fail 应该改用: find . -name file -exec bash -c 'echo abc > ...

  10. 1106C程序语法树