判断AVL树是否平衡
AVL树是高度的平衡二插搜索树,其左子树和右子树的高度之差不超过1(树中的左子树和右子树都是AVL树),维持这个高度之差就要控制它的平衡因子。那么判断一颗AVL树是否平衡就需要判断它的左子树和右子树高度差是否为1,并且子树也遵循这个原则。这里我们可以用递归的方法来判断这颗二叉树是否为平衡二叉树,看他的左右子树之差是否不超过1.代码如下:
bool IsBalance(Node* parent)
{
if (parent == NULL)
return true;
int rightHight = _Hight(parent->_right); //右树的高度
int leftHight = _Hight(parent->_left); //左树的高度
return abs(rightHight - leftHight) < 2 && IsBalance(parent->_left) && IsBalance(parent->_right); //判断左右子树绝对值是否小于2并递归
}
求高度的函数如下:
int _Hight(Node* node)
{
if (node == NULL)
return 0;
int right = _Hight(node->_right) + 1;
int left = _Hight(node->_left) + 1;
return right>left ? right : left;
}
这样的代码很容易理解也能到达求AVL树是否平衡但是由于是递归这个解法的时间复杂度比较高。那么有没有时间复杂度更优的解法呢?这里我们采用一种非递归的解法,代码如下:
bool IsBalence()
{
int hight = 0; //高度
return _IsBalece(_root, hight);
}
bool _IsBalence(Node* parent, int &hight)
{
if (parent == NULL)
{
hight = 0;
return true;
}
lefthight = 0;
if (_IsBalence(parent->_left, lefthight) == false)
return false;
righthight=0;
if (_IsBalence(parent->_right, righthight) == false)
return false;
hight = righthight > lefthight ? righthight : lefthight;
return abs(righthight - lefthight) < 2;
}
这种解法是由下向上的进行的,先求出子树的高度,然后每向上一层子树高度加一并且判断一次二叉树是否平衡,如果平衡返回值为真再继续判断,为假则二叉树不是平衡二叉树。这种方法代码没有递归的代码直观但是时间复杂度降低了。
判断AVL树是否平衡的更多相关文章
- AVL树(平衡二叉查找树)
首先要说AVL树,我们就必须先说二叉查找树,先介绍二叉查找树的一些特性,然后我们再来说平衡树的一些特性,结合这些特性,然后来介绍AVL树. 一.二叉查找树 1.二叉树查找树的相关特征定义 二叉树查找树 ...
- AVL树的平衡算法(JAVA实现)
1.概念: AVL树本质上还是一个二叉搜索树,不过比二叉搜索树多了一个平衡条件:每个节点的左右子树的高度差不大于1. 二叉树的应用是为了弥补链表的查询效率问题,但是极端情况下,二叉搜索树会无限接近 ...
- 二叉树之AVL树的平衡实现(递归与非递归)
这篇文章用来复习AVL的平衡操作,分别会介绍其旋转操作的递归与非递归实现,但是最终带有插入示例的版本会以递归呈现. 下面这张图绘制了需要旋转操作的8种情况.(我要给做这张图的兄弟一个赞)后面会给出这八 ...
- AVL树 高度平衡的二叉查找树
1.What is AVL tree? AVL tree 是一种特殊的二叉查找树,,首先我们要在树中引入平衡因子balance,表示结点右子树的高度减去左子树的高度差(右-左),对于一棵AVL树要么它 ...
- AVL树 & 重平衡概念
AVL树是有平衡条件的二叉搜索树.这个平衡条件必须容易保持,而且需要保证树的深度是O(logN). AVL=BBST 作为二叉搜索树的最后一部分,我们来介绍最为经典的一种平衡二叉搜索树:AVL树.回顾 ...
- 006-数据结构-树形结构-二叉树、二叉查找树、平衡二叉查找树-AVL树
一.概述 树其实就是不包含回路的连通无向图.树其实是范畴更广的图的特例. 树是一种数据结构,它是由n(n>=1)个有限节点组成一个具有层次关系的集合. 1.1.树的特性: 每个结点有零个或多个子 ...
- AVL树的插入操作(旋转)图解
=================================================================== AVL树的概念 在说AVL树的概念之前,我们需要清楚 ...
- AVL树的python实现
AVL树是带有平衡条件的二叉查找树,一般要求每个节点的左子树和右子树的高度最多差1(空树的高度定义为-1). 在高度为h的AVL树中,最少的节点数S(h)由S(h)=S(h-1)+S(h-2)+1得出 ...
- 算法二叉搜索树之AVL树
最近学习了二叉搜索树中的AVL树,特在此写一篇博客小结. 1.引言 对于二叉搜索树而言,其插入查找删除等性能直接和树的高度有关,因此我们发明了平衡二叉搜索树.在计算机科学中,AVL树是最先发明的自平衡 ...
随机推荐
- manta api
Authentication 有几个访问方法. 验证对服务的请求的主要方法是使用TLS上的HTTP签名. 在大多数情况下,您只需使用SSH私钥对HTTP Date标头的小写日期:和值进行签名; 这样做 ...
- 【uva1658 算法竞赛入门经典】海军上将【费用流】
题意 给出一个v(3<=v<=1000)个点e(3<=e<=10000)条边的有向加权图,求1-v的两条不相交(除了起点和终点外没有公共点)的路径,使得权和最小. 分析 费用流 ...
- 心理学轨迹及AI基础理论读后感
今天简单的看了下心理学轨迹及AI基础理论发现世界确实是那3%的人改变的,我等屁民还努力在红尘中争渡,下面简单记录下我刚看完的思路,算做个笔记给自己看.. 模型建立的最终结果可以解读所有的心理学现象,可 ...
- rtx 二次开发,查找所有部门
1>rtx二次开发操作类 using System; using System.Collections.Generic; using System.Linq; using System.Text ...
- 学 python
1. 推荐的学习教程:<python简明教程> 2. 不推荐的学习教程,可以偶尔查查:<Dive into python>,偶尔查查挺好,看多了走火入魔. 3. 推荐一个pyt ...
- List 组件简单示例及其onItemsDisclosure点击事件
来自<sencha touch权威指南>第9章,276页开始 ------------------------------------------------- app.js代码如下: E ...
- [SoapUI] 通过Groovy调用批处理文件.bat
import com.eviware.soapui.support.GroovyUtils def groovyUtils = new GroovyUtils( context ) def proje ...
- ajax 整个表单的提交
重点:data: $("#form1").serialize() function setSaveNext() { setSaveData(); var cx = pageInde ...
- Native2Ascii文件转换 -- 待完善
摘自:https://www.oschina.net/code/snippet_87799_1612 Native2Ascii文件转换 -- 待完善 package com.xxx.xxx.Util; ...
- CENTOS7 YUM安装BOOST1.53(静态版本)
按照之前的博文更新163的源之后,执行: yum install boost-static.i686 yum install boost-devel.i686 yum install boost-do ...