描述


http://www.lydsy.com/JudgeOnline/problem.php?id=1497

共n个站点,给出建立每个站点所需要的花费.现在有m个客户需要开通服务,每个客户需要有两个站点,客户给钱.问最大利润是多少.

1497: [NOI2006]最大获利

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 3932  Solved: 1926
[Submit][Status][Discuss]

Description


的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做
太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信
号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i
个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai,
Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N)
THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才
能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

Input

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

Output

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3

Sample Output

4

HINT

【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

Source

分析


要选一个客户,就必须要选他所需的两个站点,这样有约束关系的,可以用最大权闭合图做.

胡伯涛的论文<最小割模型在信息学竞赛中的应用>:

http://wenku.baidu.com/link?url=AwU_F4lYPSxxzmOrAZpL0t6lCMWjIVbuAXI59EKPbqEj7gpw0VRhhrGDU4BbOVFNGlVRt0KLZ6QrCAszJIT-TBfPV8jJ8fCTFdA4rTa3VdS

讲得挺详细,就是看起来有点费劲...

把客户和站点都看做点,客户是正权值,站点是负权值.要有客户就必须有站点,所以边由客户连向站点,表示如果客户被选中,他所需的两个站点也一定被选中.

1.站点连向汇点,容量是站点的花费的绝对值;

2.客户连向源点,容量是客户给的钱;

3.每个客户连向他所需的两个站点,容量是INF.

然后跑最大流即可.

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define rep(i,n) for(int i=0;i<(n);i++)
#define for1(i,a,n) for(int i=(a);i<=(n);i++)
#define read(a) a=getnum()
#define print(a) printf("%d\n",a)
#define CC(i,a) memset(i,a,sizeof(i))
using namespace std; const int maxn=,maxm=,INF=0x7fffffff;
int n,m,sumw;
int cost[maxn],level[maxn+maxm],iter[maxn+maxm];
struct edge { int to,cap,rev; };
vector <edge> g[maxn+maxm]; inline int getnum()
{
int r=,k=; char c;
for(c=getchar();c<''||c>'';c=getchar()) if(c=='-') k=-;
for(;c>=''&&c<='';c=getchar()) r=r*+c-'';
return r*k;
} void add_edge(int from,int to,int cap)
{
g[from].push_back((edge) { to,cap,g[to].size() });
g[to].push_back((edge) { from,,g[from].size()- });
} void bfs(int s)
{
CC(level,-);
level[s]=;
queue <int> q;
q.push(s);
while(!q.empty())
{
int t=q.front(); q.pop();
rep(i,g[t].size())
{
edge e=g[t][i];
if(level[e.to]<&&e.cap>)
{
level[e.to]=level[t]+;
q.push(e.to);
}
}
}
} int dfs(int v,int t,int f)
{
if(v==t) return f;
for(int &i=iter[v];i<g[v].size();i++)
{
edge &e=g[v][i];
if(e.cap>&&level[e.to]>level[v])
{
int d=dfs(e.to,t,min(f,e.cap));
if(d>)
{
e.cap-=d;
g[e.to][e.rev].cap+=d;
return d;
}
}
}
return ;
} int max_flow(int s,int t)
{
int flow=;
bfs(s);
while(level[t]>)
{
CC(iter,);
int f;
while((f=dfs(s,t,INF))>) flow+=f;
bfs(s);
}
return flow;
} void init()
{
read(n); read(m);
for1(i,,n)
{
read(cost[i]);
add_edge(i,n+m+,cost[i]);
}
for1(i,,m)
{
int a,b,c;
read(a); read(b); read(c);
add_edge(,n+i,c);
add_edge(n+i,a,INF);
add_edge(n+i,b,INF);
sumw+=c;
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("prof.in","r",stdin);
freopen("prof.out","w",stdout);
#endif
init();
print(sumw-max_flow(,n+m+)); #ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("prof.out");
#endif
return ;
}

BZOJ_1497_[NOI2006]_最大获利_(最大流+最大权闭合图)的更多相关文章

  1. BZOJ_1565_[NOI2009]_植物大战僵尸_(Tarjan+最大流+最大权闭合图)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1565 n*m的矩阵,可以种植植物,僵尸从图的右边进入吃植物.前面的植物可以保护后面的植物,还有 ...

  2. 最大获利 HYSBZ - 1497 (最大权闭合图)

    最大权闭合图: 有向图,每个点有点权,点权可正可负.对于任意一条有向边i和j,选择了点i就必须选择点j,你需要选择一些点使得得到权值最大. 解决方法: 网络流 对于任意点i,如果i权值为正,s向i连容 ...

  3. [网络流24题] 太空飞行计划问题 (最大流->最大权闭合图)

    洛谷传送门 LOJ传送门 做这道题之前建议先看这篇论文,虽然论文里很多地方用了很多术语,但hbt神犇讲得很明白 这篇题解更加偏向于感性理解 把问题放到二分图上,左侧一列点是实验,权值为$p[i]$,右 ...

  4. 【TYVJ】1338 QQ农场(最大流+最大权闭合图)

    http://tyvj.cn/Problem_Show.aspx?id=1338 时间才排到rank7,还不快啊囧.isap我常数都写得那么小了... 最大权闭合图看我另一篇博文吧 此题很明显的模型. ...

  5. POJ_2987_Firing_(最大流+最大权闭合图)

    描述 http://poj.org/problem?id=2987 要炒员工鱿鱼,炒了一个人,他的下属一定被炒.给出每个人被炒后公司的收益(负值表示亏损),问怎样炒公司收益最大,以及这种方法炒了几个人 ...

  6. [网络流24题] 方格取数问题/骑士共存问题 (最大流->最大权闭合图)

    洛谷传送门 LOJ传送门 和太空飞行计划问题一样,这依然是一道最大权闭合图问题 “骑士共存问题”是“方格取数问题”的弱化版,本题解不再赘述“骑士共存问题”的做法 分析题目,如果我们能把所有方格的数都给 ...

  7. 最大权闭合图 && 【BZOJ】1497: [NOI2006]最大获利

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 最大权闭合图详细请看胡伯涛论文<最小割模型在信息学竞赛中的应用>,我在这里截图它的 ...

  8. BZOJ 1497 JZYZOJ 1344 [NOI2006]最大获利 网络流 最大权闭合图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 http://172.20.6.3/Problem_Show.asp?id=1344   思路 ...

  9. BZOJ 1497 最大获利(最大权闭合图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MB Submit: 4686  Solved: 2295 [Submit][Statu ...

随机推荐

  1. Hyper-V Windows 8.1 & Windows Server 2012 R2 Q&A

    从Windows8开始,x64位系统自带Hyper-V功能,很多开发者和专业用户往往希望利用的Microsoft提供的这一免费功能,但是微软在这方面并不是最佳. 主要写几个大家经常遇到的问题. Win ...

  2. OC - 5.内存管理

    一.引用计数器 1> 栈和堆 栈 ① 主要存储局部变量 ② 内存自动回收 堆 ① 主要存储需要动态分配内存的变量 ② 需要手动回收内存,是OC内存管理的对象 2> 简介 作用 ① 表示对象 ...

  3. 关于arcgis 9.3破解问题详解

    对于初学GIS的同学,安装软件可能会遇到各种各样的问题,对于photoshop,autocad,sketchup,3dmax等软件我们的我们无非是输入特定序列号或者用工具随机生成特定序列号就可以破解, ...

  4. HDU 4708 Rotation Lock Puzzle(模拟)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4708 题目大意:给定一个方形矩阵,边长为3-10的奇数.每一圈的数字可以沿着顺时针方向和逆时针方向旋转 ...

  5. 排序算法——QuickSort、MergeSort、HeapSort(C++实现)

    快速排序QuickSort template <class Item> void quickSort (Item a[], int l, int r) { if (r<=l) ret ...

  6. ubuntu server 安装

    http://tigerlchen.iteye.com/blog/1765765  解决CDROM找不到的bug

  7. docker 挂在本地目录

    docker run -i -t -v /home/:/opt/data jenkins /bin/bash    运行jenkins,把本地中的/home/   挂载到虚拟机中的/opt/data/ ...

  8. mysql中 出现No query specified

    Mysql----error:no query specified mysql下抛出错误: error:no query specified 出现此错误是sql不合法原因: 如:select * fr ...

  9. sass中 混合宏 VS 继承 VS 占位符 各自的使用时机和特点

    初学者都常常纠结于这个问题“什么时候用混合宏,什么时候用继承,什么时候使用占位符?”其实他们各有各的优点与缺点,先来看看他们使用效果: a) Sass 中的混合宏使用 举例代码见 2-24 行 编译出 ...

  10. 使用WMI监控进程启动与结束

    需要添加引用System.Management 代码: static void Main(string[] args) { //创建WQL事件查询,监视进程开启 var qCreate = new W ...