原题https://uva.onlinejudge.org/external/13/1343.pdf


题意:  

有个#字型的棋盘,2行2列,一共24个格。

如图:每个格子是1或2或3,一共8个1,8个2,8个3.

有A~H一共8种合法操作,比如A代表把A这一列向上移动一个,最上面的格会补到最下面。

求:使中心8个格子数字一致的最少步骤,要输出具体的操作步骤及最终中心区域的数字。如果有多个解,输出字典序最小的操作步骤。


分析:

很明显的一个状态空间搜索问题,不过可以注意到,虽然每一个状态有八个可能的后续状态,随着操作数n的增加,总状态数 8^n 还是大得可怕。比如当n=11时,总状态为8^11 = 85亿。就算通过自己创建特制的哈希表进行状态判重,优化效果并不明显,因为最近一直在做状态空间搜索问题,即使用bfs+剪枝+哈希表,这些程序都无一例外的超时了,所以现在看到状态空间搜索问题,如果没有特别好的剪枝,我绝对不敢用bfs了.....

回到这道题,所有可以用bfs,回溯解决的问题,尤其是解答树的结点数没有明显上限的题,选择用迭代加深搜索算法都特别好用(原因可以参考我上一篇文章)。这里IDA*(迭代加深A*算法)其实说白了就是迭代加深+剪枝.

A*算法是对于每一步考虑 g(n) + h()和MAXD的关系。

稍微解释一下,g(n)是从起点到当前状态的总步数,MAXD是我们提前通过计算证明得到的最短路线总步数的上限,h()是启发函数,是整个算法的关键,我们设计的h()可以预估从当前状态到目标状态至少需要的步数。

这样,上面的关系式就很好理解了。g(n) + h() > MAXD 意味着当前已经走的步数+至少还需要的步数 > 我可以走的步数上限,这种状态,必然已经没有继续的必要,回溯。

对于这道题,可以注意到,对于每一次操作,我们最多可以让中心格子多一个目标数字,如果当前中心格子待整理的数字个数大于我们还可以走的步数,回溯。

这样,就得到了

    if (d + num_unordered() > MAXD) return false;

    这一核心剪枝公式。 剩下的就简单了。

代码只有52行,还是很简洁的。而且运行速度很快。过30组数据只用了126ms.

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = , LEN = ;
int board[LEN][LEN - ] = { {, , , , , , }, {, , , , , , },
{, , , , , , }, {, , , , , , },
{, , , , , , }, {, , , , , , },
{, , , , , , }, {, , , , , , } };
int check_order[] = {, , , , , , , }, a[MAXN], maxd;
char order[]; int unordered() {
int n1 = , n2 = , n3 = ;
for (int i = ; i < LEN; i++)
if (a[check_order[i]] == ) n1++;
else if (a[check_order[i]] == ) n2++;
else n3++;
return LEN - max(max(n1, n2), n3);
} void rotate(int di) {
int t = a[board[di][]];
for (int i = ; i < LEN - ; i++) a[board[di][i - ]] = a[board[di][i]];
a[board[di][LEN - ]] = t;
} bool dfs(int d) {
int cnt = unordered();
if (!cnt) return true;
if (cnt + d > maxd) return false;
int temp[MAXN]; memcpy(temp, a, sizeof(a));
for (int i = ; i < LEN; i++) {
rotate(i);
order[d] = i + 'A';
if (dfs(d + )) return true;
memcpy(a, temp, sizeof(a));
}
return false;
} int main() {
freopen("in", "r", stdin);
while (scanf("%d", &a[]) && a[]) {
for (int i = ; i < MAXN; i++) scanf("%d", &a[i]);
if (!unordered()) { printf("No moves needed\n%d\n", a[]); continue;}
for (maxd = ;; maxd++) if (dfs()) break;
for (int i = ; i < maxd; i++) printf("%c", order[i]);
printf("\n%d\n", a[]);
}
return ;
}

顺便纪念一下排第六(前面3个是virtual oj......)

Uva1343-The Rotation Game-IDA*算法的更多相关文章

  1. HUD 1043 Eight 八数码问题 A*算法 1667 The Rotation Game IDA*算法

    先是这周是搜索的题,网站:http://acm.hdu.edu.cn/webcontest/contest_show.php?cid=6041 主要内容是BFS,A*,IDA*,还有一道K短路的,.. ...

  2. 【学时总结】 ◆学时·II◆ IDA*算法

    [学时·II] IDA*算法 ■基本策略■ 如果状态数量太多了,优先队列也难以承受:不妨再回头看DFS-- A*算法是BFS的升级,那么IDA*算法是对A*算法的再优化,同时也是对迭代加深搜索(IDF ...

  3. HDU3567 Eight II —— IDA*算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3567 Eight II Time Limit: 4000/2000 MS (Java/Others)  ...

  4. The Rotation Game(IDA*算法)

    The Rotation Game Time Limit : 30000/15000ms (Java/Other)   Memory Limit : 300000/150000K (Java/Othe ...

  5. UVA-1343 The Rotation Game (IDA*)

    题目大意:数字1,2,3都有八个,求出最少的旋转次数使得图形中间八个数相同.旋转规则:对于每一长行或每一长列,每次旋转就是将数据向头的位置移动一位,头上的数放置到尾部.若次数相同,则找出字典序最小旋转 ...

  6. [poj2286]The Rotation Game (IDA*)

    //第一次在新博客里发文章好紧张怎么办 //MD巨神早已在一个小时前做完了 The Rotation Game Time Limit: 15000MS Memory Limit: 150000K To ...

  7. 7-12 The Rotation Game IDA*

    状态搜索题目  一开始打算用bfs  但是图给的不是矩形图  有点难以下手 参考了 lrj    将图上所有的点进行标号  直接一个一维数组就解决了图的问题  并且明确了每个点的标号  处理起来十分方 ...

  8. POJ2286 The Rotation Game[IDA*迭代加深搜索]

    The Rotation Game Time Limit: 15000MS   Memory Limit: 150000K Total Submissions: 6325   Accepted: 21 ...

  9. 八数码(IDA*算法)

    八数码 IDA*就是迭代加深和A*估价的结合 在迭代加深的过程中,用估计函数剪枝优化 并以比较优秀的顺序进行扩展,保证最早搜到最优解 需要空间比较小,有时跑得比A*还要快 #include<io ...

  10. HDU1560 DNA sequence —— IDA*算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1560 DNA sequence Time Limit: 15000/5000 MS (Java/Oth ...

随机推荐

  1. 测测你适合从事Web前端开发吗

    一般初创的互联网公司最烧钱的时候往往都是刚刚获得风投或融资的时候,因为他们要把钱砸向前端,因为那时候没有客户访问,对于企业来说只有先做好前端技 术.做好客户体验一切才有可能.用户体验做好,才有人访问, ...

  2. SQL Server中的死锁

    简介 死锁的本质是一种僵持状态,是多个主体对于资源的争用而导致的.理解死锁首先需要对死锁所涉及的相关观念有一个理解. 一些基础知识 要理解SQL Server中的死锁,更好的方式是通过类比从更大的面理 ...

  3. Orace数据库锁表的处理与总结<摘抄与总结三>

    当Oracle数据库发生TX锁等待时,如果不及时处理常常会引起Oracle数据库挂起,或导致死锁的发生,产生ORA-60的错误. TX锁等待的分析 Oracle数据库中一般使用行级锁. 当Oracle ...

  4. linux常用命令之tail

    从指定点开始将文件写到标准输出.使用tail命令的-f选项可以方便的查阅正在改变的日志文件,tail -f filename会把filename里最尾部的内容显示在屏幕上,并且不但刷新,使你看到最新的 ...

  5. OC - 25.CAKeyframeAnimation

    概述 简介 CAKeyframeAnimation又称关键帧动画 CAKeyframeAnimation是抽象类CAPropertyAnimation的子类,可以直接使用 通过values与path两 ...

  6. 使用OC开发phonegp 组件

    使用OC开发phonegp 组件 1. 使用oc 对phonegp中的组件近些开发,首先具体的pgonegp跟nativecode之间的一些优劣就不说了,开发phonegp 对应的组件主要就是使用na ...

  7. 10集合:List<T>,Dictionary<K,V>

    List<T>泛型集合 List<T>是C#中一种快捷.易于使用的泛型集合类型,使用泛型编程为编写面向对象程序增加了极大的效率和灵活性.   1.List<T>用法 ...

  8. SGU 115.Calendar

    连水3道,还能更水么... #include <stdio.h> using namespace std; ] = {, , , , , , , , , , , , }; int n, m ...

  9. 【BZOJ1012】【树状数组求区间最值】最大数maxnumber

    Description 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度. 2. ...

  10. URPF 简单流程

    主要功能是防止基于源地址欺骗的网络攻击. 路由器接口一旦使能URPF功能,当该接口收到数据报文时,首先会对数据报文的源地址进行合法性检查,对于源地址合法性检查通过的报文,才会进一步查找去往目的地址的转 ...