297 - Quadtrees (UVa)
Quadtrees
A quadtree is a representation format used to encode images. The fundamental idea behind the quadtree is that any image can be split into four quadrants. Each quadrant may again be split in four sub quadrants, etc. In the quadtree, the image is represented by a parent node, while the four quadrants are represented by four child nodes, in a predetermined order.
Of course, if the whole image is a single color, it can be represented by a quadtree consisting of a single node. In general, a quadrant needs only to be subdivided if it consists of pixels of different colors. As a result, the quadtree need not be of uniform depth.
A modern computer artist works with black-and-white images of
units, for a total of 1024 pixels per image. One of the operations he performs is adding two images together, to form a new image. In the resulting image a pixel is black if it was black in at least one of the component images, otherwise it is white.
This particular artist believes in what he calls the preferred fullness: for an image to be interesting (i.e. to sell for big bucks) the most important property is the number of filled (black) pixels in the image. So, before adding two images together, he would like to know how many pixels will be black in the resulting image. Your job is to write a program that, given the quadtree representation of two images, calculates the number of pixels that are black in the image, which is the result of adding the two images together.
In the figure, the first example is shown (from top to bottom) as image, quadtree, pre-order string (defined below) and number of pixels. The quadrant numbering is shown at the top of the figure.

Input Specification
The first line of input specifies the number of test cases (N) your program has to process.
The input for each test case is two strings, each string on its own line. The string is the pre-order representation of a quadtree, in which the letter 'p' indicates a parent node, the letter 'f' (full) a black quadrant and the letter 'e' (empty) a white quadrant. It is guaranteed that each string represents a valid quadtree, while the depth of the tree is not more than 5 (because each pixel has only one color).
Output Specification
For each test case, print on one line the text 'There are X black pixels.', where X is the number of black pixels in the resulting image.
Example Input
3
ppeeefpffeefe
pefepeefe
peeef
peefe
peeef
peepefefe
Example Output
There are 640 black pixels.
There are 512 black pixels.
There are 384 black pixels.
题意:这道题的意思是有一块图片,总共分为1024块像素。然后每一个大正方形可以分为四块。以此类推,直到最后分为最小的1024块像素之一。
即每棵树如果有子节点,那么就会有4个子树。具体看一下上面的图就一目了然了。
那么这道题我看到四个儿子就退缩了。没有用树来做。
反正也就1024块方块,我就直接用模拟的形式将其染色。在输入的时候,利用栈的原理来做。就是只有非叶子才能入栈,然后要用变量来标记一下这是第几个儿子。
不过我看了网上其他人的代码,用树来做也不是很麻烦。不过做起来还是没有直接染色做的方便吧。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<stack>
#define maxn 1024
using namespace std;
struct node
{
char ch;
int x;
}temp;
char ch;
int t,i,j,lz;
int a1[1200]= {0},a2[1200]= {0};
void input(int *a1)
{
stack<node> s;
temp.ch='p';
temp.x=0;
int bj=0;
s.push(temp);
while(cin>>ch)
{
if (ch=='p')
{
temp=s.top();
s.pop();
temp.x++;
s.push(temp);
temp.ch='p';
temp.x=0;
s.push(temp);
}
else
{
temp=s.top();
lz=maxn/pow(4,(s.size()-1));
if (ch=='f')
{
for (i=bj; i<bj+lz; i++)
a1[i]=1;
}
bj=bj+lz;//这个变量很重要,每次分块之后,不过染没染色,要移动一个模块。
s.pop();
temp.x++;
s.push(temp);
}
temp=s.top(); while(temp.x==4)
{
s.pop();
temp=s.top();
}
//cout<<temp.x<<endl;
if (s.size()==1) break;
}
s.pop();
}
int main ()
{
char s1[2000],s2[2000];
cin>>t;
while(t--)
{
memset(a1,0,sizeof(a1));
memset(a2,0,sizeof(a2));
input(a1);
input(a2);
int sum=0;
for (i=0; i<maxn; i++)
if (a1[i] || a2[i])
sum++;
printf("There are %d black pixels.\n",sum);
}
return 0;
}
297 - Quadtrees (UVa)的更多相关文章
- UVa 297 Quadtrees(树的递归)
Quadtrees 四分树就是一颗一个结点只有4个儿子或者没有儿子的树 [题目链接]UVa 297 Quadtrees [题目类型]树的递归 &题意: 一个图片,像素是32*32,给你两个先序 ...
- UVA.297 Quadtrees (四分树 DFS)
UVA.297 Quadtrees (四分树 DFS) 题意分析 将一个正方形像素分成4个小的正方形,接着根据字符序列来判断是否继续分成小的正方形表示像素块.字符表示规则是: p表示这个像素块继续分解 ...
- uva 297 quadtrees——yhx
Quadtrees A quadtree is a representation format used to encode images. The fundamental idea behind ...
- UVA 297 Quadtrees(四叉树建树、合并与遍历)
<span style="font-size: 18pt; font-family: Arial, Helvetica, sans-serif; background-color: r ...
- UVa 297 Quadtrees -SilverN
A quadtree is a representation format used to encode images. The fundamental idea behind the quadtre ...
- UVa 297 - Quadtrees
题目:利用四叉树处理图片,给你两张黑白图片的四叉树,问两张图片叠加后黑色的面积. 分析:搜索.数据结构.把图片分成1024块1*1的小正方形,建立一位数组记录对应小正方形的颜色. 利用递归根据字符串, ...
- UVA - 297 Quadtrees (四分树)
题意:求两棵四分树合并之后黑色像素的个数. 分析:边建树边统计. #include<cstdio> #include<cstring> #include<cstdlib& ...
- 【紫书】Quadtrees UVA - 297 四叉树涂色
题意:前序遍历给出两个像素方块.求两个方块叠加后有几个黑色格子. 题解:每次读进来一个方块,就在二维数组上涂色.每次把白色涂黑就cnt++: 具体递归方法是以右上角坐标与边长为参数,每次通过几何规律往 ...
- 四分树 (Quadtrees UVA - 297)
题目描述: 原题:https://vjudge.net/problem/UVA-297 题目思路: 1.依旧是一波DFS建树 //矩阵实现 2.建树过程用1.0来填充表示像素 #include < ...
随机推荐
- IntentFilter
当Intent在组件间传递时,组件如果想告知Android系统自己能够响应和处理哪些Intent,那么就需要用到IntentFilter对象. 顾名思义,IntentFilter对象负责过滤掉组件无法 ...
- C#学习第四天
今天主要学习了结构方面的知识,首先是定义,代码: struct<typeName> { <memberDeclarations> } struct route { public ...
- My.Ioc 代码示例——属性和方法注入
在 My.Ioc 中,我们可以指定让容器在构建好对象实例之后,自动为我们调用对象的公共方法或是为对象的公共属性赋值.在解析对象实例时,容器将根据我们在注册对象时指定的方法调用或属性赋值的先后顺序,调用 ...
- [转] UIImage 图像-IOS开发 (实例)
转自 http://justcoding.iteye.com/blog/1470931 一 UIImageView 简介 UIImageView是显示图片的控件,显示图片时,首先需要把图片加载到UI ...
- UISegmentControl 、UIStepper
UISegmentControl .UIStepper UISegmentControl 1. UISegmentedControl *segmentControl = [[UISegmentedCo ...
- PHP MySQL 创建数据库
PHP MySQL 创建数据库 数据库存有一个或多个表. 你需要 CREATE 权限来创建或删除 MySQL 数据库. 使用 MySQLi 和 PDO 创建 MySQL 数据库 CREATE DATA ...
- 0.0C语言重点问题回顾
左值和右值得区别:左值是用来表明变量的身份的,右值更加侧重于值本身: void*是个例外,它只有基地址没有类型信息,所以无法解引用. int *p = malloc(100); char *s = m ...
- 页面d初始化加载
1.$(document).ready(function () { alert("Hello Word!"); }); 或简写为 2.$(function(){ alert(&qu ...
- Spring MVC PageNotFound.noHandlerFound No mapping found for HTTP request with URI
首先骂人,干他娘的,弄了两个小时原来的包倒错了!!唉TMD. 注意用IDEA倒包的时候一定要注意ModelAndView是 原因是import出错了!!应该是import org.springfram ...
- ch01.深入理解C#委托及原理(转)
ch01..深入理解C#委托及原理_<没有控件的ASPDONET> 一.委托 设想,如果我们写了一个厨师做菜方法用来做菜,里面有 拿菜.切菜.配菜.炒菜 四个环节,但编写此方法代码的人想让 ...