4 微积分

在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。为了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。如图所示,内接多边形的等长边越多,就越接近圆。这个过程也被称为逼近法(method of exhaustion)

事实上,逼近法就是积分(integral calculus)的起源。2000多年后,微积分的另一支,微分(differentialcalculus)被发明出来。在微分学最重要的应用是优化问题,即考虑如何把事情做到最好。这种问题在深度学习中是无处不在的。在深度学习中,我们“训练”模型,不断更新它们,使它们在看到越来越多的数据时变得越来越好。通常情况下,变得更好意味着最小化一个损失函数(loss function),即一个衡量“模型有多糟糕”这个问题的分数。最终,我们真正关心的是生成一个模型,它能够在从未见过的数据上表现良好。但“训练”模型只能将模型与我们实际能看到的数据相拟合。因此,我们可以将拟合模型的任务分解为两个关键问题:

  • 优化(optimization):用模型拟合观测数据的过程;
  • 泛化(generalization):数学原理和实践者的智慧,能够指导我们生成出有效性超出用于训练的数据集本身的模型。

4.1 导数和微分

我们首先讨论导数的计算,这是几乎所有深度学习优化算法的关键步骤。在深度学习中,我们通常选择对于模型参数可微的损失函数。简而言之,对于每个参数,如果我们把这个参数增加或减少一个无穷小的量,可以知道损失会以多快的速度增加或减少,假设我们有一个函数\(f : \mathbb{R} \rightarrow \mathbb{R}\) ,其输入和输出都是标量。如果f的导数存在,这个极限被定义为

\[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

如果f在一个区间内的每个数上都是可微的,则此函数在此区间中是可微。如果f′(a)存在,则称f在a处是可微(differentiable)的。

我们可以将导数f′(x)解释为f(x)相对于x的瞬时(instantaneous)变化率。所谓的瞬时变化率是基于x中的变化h,且h接近0。为了更好地解释导数,让我们做一个实验。

%matplotlib inline
import numpy as np
from matplotlib_inline import backend_inline
def f(x):
return 3 * x ** 2 - 4 * x

当x = 1时,导数u′是2。

def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1
h=0.10000, numerical limit=2.30000
h=0.01000, numerical limit=2.03000
h=0.00100, numerical limit=2.00300
h=0.00010, numerical limit=2.00030
h=0.00001, numerical limit=2.00003

为了对导数的这种解释进行可视化,我们将使用matplotlib,这是一个Python中流行的绘图库。要配

置matplotlib生成图形的属性,我们需要定义几个函数。在下面,use_svg_display函数指定matplotlib软件包输出svg图表以获得更清晰的图像。

def use_svg_display(): #@save

    backend_inline.set_matplotlib_formats('svg')

我们定义set_figsize函数来设置图表大小。因为导入语句 from matplotlib mport pyplot as plt已标记为保存中。

def set_figsize(figsize=(3.5, 2.5)): #@save
"""设置matplotlib的图表大小"""
use_svg_display()
d2l.plt.rcParams['figure.figsize'] = figsize

下面的set_axes函数用于设置由matplotlib生成图表的轴的属性。

#@save
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""设置matplotlib的轴"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:
axes.legend(legend)
axes.grid()

通过这三个用于图形配置的函数,定义一个plot函数来简洁地绘制多条曲线。

#@save
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
"""绘制数据点"""
if legend is None:
legend = []
set_figsize(figsize)
axes = axes if axes else d2l.plt.gca()
# 如果X有一个轴,输出True
def has_one_axis(X):
return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)and not hasattr(X[0], "__len__"))
if has_one_axis(X):
X = [X]
if Y is None:
X, Y = [[]] * len(X), X
elif has_one_axis(Y):
Y = [Y]
if len(X) != len(Y):
X = X * len(Y)
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
if len(x):
axes.plot(x, y, fmt)
else:
axes.plot(y, fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)

现在我们可以绘制函数u = f(x)及其在x = 1处的切线y = 2x − 3,其中系数2是切线的斜率。

x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])

4.2 偏导数

到目前为止,我们只讨论了仅含一个变量的函数的微分。在深度学习中,函数通常依赖于许多变量。因此,我们需要将微分的思想推广到多元函数(multivariate function)上。

设\(y = f(x_1, x_2, . . . , x_n)\)是一个具有n个变量的函数。\(y\)关于第\(i\)个参数\(x_i\)的偏导数(partial derivative)为:

\[\frac{\partial f}{\partial x_i} = \lim_{{h \to 0}} \frac{f(x_1, \ldots, x_{i-1}, x_i + h, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_i, \ldots, x_n)}{h}
\]

4.3 梯度

我们可以连结一个多元函数对其所有变量的偏导数,以得到该函数的梯度(gradient)向量。具体而言,设

函数\(f: \mathbb{R}^n \rightarrow \mathbb{R}\)的输入是一个n维向量\(\mathbf{x} = [x_1, x_2, \ldots, x_n]^T\),并且输出是一个标量。函数f(x)相对于x的梯度是一个包含n个偏导数的向量:

\[\nabla f(\mathbf{x}) = \left[ \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right]^T
\]

4.4 链式法则

然而,上面方法可能很难找到梯度。这是因为在深度学习中,多元函数通常是复合(composite)的,所以难以应用上述任何规则来微分这些函数。幸运的是,链式法则可以被用来微分复合函数。

让我们先考虑单变量函数。假设函数y = f(u)和u = g(x)都是可微的,根据链式法则:

\[\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
\]

现在考虑一个更一般的场景,即函数具有任意数量的变量的情况。假设可微分函数y有变量 $( x_1, x_2, \ldots, x_n ) $,其中每个可微分函数 \(u_i\) 都有变量 \(( u_1, u_2, \ldots, u_m )\)。注意,y是 $( x_1, x_2, \ldots, x_n ) $的函数。链式法则给出:

\[\frac{{\partial y}}{{\partial x_i}} = \sum_{j=1}^{m} \frac{{\partial y}}{{\partial u_j}} \cdot \frac{{\partial u_j}}{{\partial x_i}}
\]

声明:

本系列学习笔记主要以《动手学深度学习》的pytorch版本为主。

详细见GitHub:https://github.com/d2l-ai/d2l-zh

或者 https://zh.d2l.ai/

【pytorch学习】之微积分的更多相关文章

  1. 【深度学习】Pytorch学习基础

    目录 pytorch学习 numpy & Torch Variable 激励函数 回归 区分类型 快速搭建法 模型的保存与提取 批训练 加速神经网络训练 Optimizer优化器 CNN MN ...

  2. Pytorch学习之源码理解:pytorch/examples/mnists

    Pytorch学习之源码理解:pytorch/examples/mnists from __future__ import print_function import argparse import ...

  3. Pytorch学习记录-torchtext和Pytorch的实例( 使用神经网络训练Seq2Seq代码)

    Pytorch学习记录-torchtext和Pytorch的实例1 0. PyTorch Seq2Seq项目介绍 1. 使用神经网络训练Seq2Seq 1.1 简介,对论文中公式的解读 1.2 数据预 ...

  4. Pytorch学习--编程实战:猫和狗二分类

    Pytorch学习系列(一)至(四)均摘自<深度学习框架PyTorch入门与实践>陈云 目录: 1.程序的主要功能 2.文件组织架构 3. 关于`__init__.py` 4.数据处理 5 ...

  5. 新手必备 | 史上最全的PyTorch学习资源汇总

    目录: PyTorch学习教程.手册 PyTorch视频教程 PyTorch项目资源      - NLP&PyTorch实战      - CV&PyTorch实战 PyTorch论 ...

  6. [深度学习] Pytorch学习(一)—— torch tensor

    [深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% im ...

  7. pytorch学习笔记(6)--神经网络非线性激活

    如果神经元的输出是输入的线性函数,而线性函数之间的嵌套任然会得到线性函数.如果不加非线性函数处理,那么最终得到的仍然是线性函数.所以需要在神经网络中引入非线性激活函数. 常见的非线性激活函数主要包括S ...

  8. Pytorch学习笔记(二)---- 神经网络搭建

    记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # Al ...

  9. Pytorch学习笔记(一)---- 基础语法

    书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and ...

  10. pytorch学习-WHAT IS PYTORCH

    参考:https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor- ...

随机推荐

  1. 基于可穿戴的GPS定位存储模块方案特色解析

    前记   GPS作为一个位置定位手段,在日常生活中扮演着非常重要的角色.在研发动物可穿戴产品的同时.团队一直在做产品和模块标准化的事情,尽量把研发出来的东西标准化.按照任老板的说法,在追求理想主义的路 ...

  2. 阿里云配置http转https

    参考:https://www.cnblogs.com/alexfly/p/10615986.htmlhttps://www.cnblogs.com/SemiconductorKING/p/910697 ...

  3. P2602 [ZJOI2010] 数字计数:数位DP

    https://www.luogu.com.cn/problem/P2602 // #include <iostream> // #include <iomanip> // # ...

  4. (2)Python解释器的安装

    鉴于有同学在安装Python解释器出现了问题,这里再安装一下 step1,下载安装包,链接https://www.python.org/downloads/ 这里我安装的是3.6.4版本 我选择的是6 ...

  5. InfluxDB、Grafana、node_exporter、Prometheus搭建压测平台

    InfluxDB.Grafana.node_exporter.Prometheus搭建压测平台 我们的压测平台的架构图如下: 配置docker环境 1)yum 包更新到最新 sudo yum upda ...

  6. JavaScript知识总结 终结篇--面向对象,垃圾回收与内存泄漏

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 一.面向对象 一般使用字面量的形式直接创建对象,但是这种创建方式对于创建大量相似对象的时候,会产生大量的重复代码.但 js和一般的面向对象 ...

  7. KingbaseES V8R6 中syssql_tmp目录说明

    前言 不久前有前端人员咨询过一个问题,为什么syssql_tmp目录下会产生如此多的大文件. 针对这个目录的解释是:临时文件(用于排序超出内存容量的数据等操作)是在$KINGBASE_DATA/bas ...

  8. HTML实现发送接收串口和TCP数据

    前提 请安装通讯调试工具,所有的网页必须运行在本工具上,在其他浏览器直接打开是不行的. 效果显示 在网页上右键打开,选择其他应用 2.在其他应用中找到通讯调试工具 如果没有这一项,点更多,在计算机中查 ...

  9. #网络流,二分#洛谷 3324 [SDOI2015]星际战争

    题目 分析 二分答案,然后建图判断可行性 代码 #include <cstdio> #include <cctype> #include <queue> #defi ...

  10. 基于文件语义实现S3接口语义的注意事项

    本文标题中提到的文件语义,指的是POSIX规范. S3指的是AWS提供的对象存储服务以及相关接口.为方便描述,下文中以对象语义替代S3接口语义. 文件语义和对象语义存在比较多的差异. 对象语义不支持文 ...