【pytorch学习】之微积分
4 微积分
在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。为了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。如图所示,内接多边形的等长边越多,就越接近圆。这个过程也被称为逼近法(method of exhaustion)

事实上,逼近法就是积分(integral calculus)的起源。2000多年后,微积分的另一支,微分(differentialcalculus)被发明出来。在微分学最重要的应用是优化问题,即考虑如何把事情做到最好。这种问题在深度学习中是无处不在的。在深度学习中,我们“训练”模型,不断更新它们,使它们在看到越来越多的数据时变得越来越好。通常情况下,变得更好意味着最小化一个损失函数(loss function),即一个衡量“模型有多糟糕”这个问题的分数。最终,我们真正关心的是生成一个模型,它能够在从未见过的数据上表现良好。但“训练”模型只能将模型与我们实际能看到的数据相拟合。因此,我们可以将拟合模型的任务分解为两个关键问题:
- 优化(optimization):用模型拟合观测数据的过程;
- 泛化(generalization):数学原理和实践者的智慧,能够指导我们生成出有效性超出用于训练的数据集本身的模型。
4.1 导数和微分
我们首先讨论导数的计算,这是几乎所有深度学习优化算法的关键步骤。在深度学习中,我们通常选择对于模型参数可微的损失函数。简而言之,对于每个参数,如果我们把这个参数增加或减少一个无穷小的量,可以知道损失会以多快的速度增加或减少,假设我们有一个函数\(f : \mathbb{R} \rightarrow \mathbb{R}\) ,其输入和输出都是标量。如果f的导数存在,这个极限被定义为
\]
如果f在一个区间内的每个数上都是可微的,则此函数在此区间中是可微。如果f′(a)存在,则称f在a处是可微(differentiable)的。
我们可以将导数f′(x)解释为f(x)相对于x的瞬时(instantaneous)变化率。所谓的瞬时变化率是基于x中的变化h,且h接近0。为了更好地解释导数,让我们做一个实验。
%matplotlib inline
import numpy as np
from matplotlib_inline import backend_inline
def f(x):
return 3 * x ** 2 - 4 * x
当x = 1时,导数u′是2。
def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1
h=0.10000, numerical limit=2.30000
h=0.01000, numerical limit=2.03000
h=0.00100, numerical limit=2.00300
h=0.00010, numerical limit=2.00030
h=0.00001, numerical limit=2.00003
为了对导数的这种解释进行可视化,我们将使用matplotlib,这是一个Python中流行的绘图库。要配
置matplotlib生成图形的属性,我们需要定义几个函数。在下面,use_svg_display函数指定matplotlib软件包输出svg图表以获得更清晰的图像。
def use_svg_display(): #@save
backend_inline.set_matplotlib_formats('svg')
我们定义set_figsize函数来设置图表大小。因为导入语句 from matplotlib mport pyplot as plt已标记为保存中。
def set_figsize(figsize=(3.5, 2.5)): #@save
"""设置matplotlib的图表大小"""
use_svg_display()
d2l.plt.rcParams['figure.figsize'] = figsize
下面的set_axes函数用于设置由matplotlib生成图表的轴的属性。
#@save
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""设置matplotlib的轴"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:
axes.legend(legend)
axes.grid()
通过这三个用于图形配置的函数,定义一个plot函数来简洁地绘制多条曲线。
#@save
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
"""绘制数据点"""
if legend is None:
legend = []
set_figsize(figsize)
axes = axes if axes else d2l.plt.gca()
# 如果X有一个轴,输出True
def has_one_axis(X):
return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)and not hasattr(X[0], "__len__"))
if has_one_axis(X):
X = [X]
if Y is None:
X, Y = [[]] * len(X), X
elif has_one_axis(Y):
Y = [Y]
if len(X) != len(Y):
X = X * len(Y)
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
if len(x):
axes.plot(x, y, fmt)
else:
axes.plot(y, fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
现在我们可以绘制函数u = f(x)及其在x = 1处的切线y = 2x − 3,其中系数2是切线的斜率。
x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])

4.2 偏导数
到目前为止,我们只讨论了仅含一个变量的函数的微分。在深度学习中,函数通常依赖于许多变量。因此,我们需要将微分的思想推广到多元函数(multivariate function)上。
设\(y = f(x_1, x_2, . . . , x_n)\)是一个具有n个变量的函数。\(y\)关于第\(i\)个参数\(x_i\)的偏导数(partial derivative)为:
\]
4.3 梯度
我们可以连结一个多元函数对其所有变量的偏导数,以得到该函数的梯度(gradient)向量。具体而言,设
函数\(f: \mathbb{R}^n \rightarrow \mathbb{R}\)的输入是一个n维向量\(\mathbf{x} = [x_1, x_2, \ldots, x_n]^T\),并且输出是一个标量。函数f(x)相对于x的梯度是一个包含n个偏导数的向量:
\]
4.4 链式法则
然而,上面方法可能很难找到梯度。这是因为在深度学习中,多元函数通常是复合(composite)的,所以难以应用上述任何规则来微分这些函数。幸运的是,链式法则可以被用来微分复合函数。
让我们先考虑单变量函数。假设函数y = f(u)和u = g(x)都是可微的,根据链式法则:
\]
现在考虑一个更一般的场景,即函数具有任意数量的变量的情况。假设可微分函数y有变量 $( x_1, x_2, \ldots, x_n ) $,其中每个可微分函数 \(u_i\) 都有变量 \(( u_1, u_2, \ldots, u_m )\)。注意,y是 $( x_1, x_2, \ldots, x_n ) $的函数。链式法则给出:
\]
声明:
本系列学习笔记主要以《动手学深度学习》的pytorch版本为主。
详细见GitHub:https://github.com/d2l-ai/d2l-zh
或者 https://zh.d2l.ai/
【pytorch学习】之微积分的更多相关文章
- 【深度学习】Pytorch学习基础
目录 pytorch学习 numpy & Torch Variable 激励函数 回归 区分类型 快速搭建法 模型的保存与提取 批训练 加速神经网络训练 Optimizer优化器 CNN MN ...
- Pytorch学习之源码理解:pytorch/examples/mnists
Pytorch学习之源码理解:pytorch/examples/mnists from __future__ import print_function import argparse import ...
- Pytorch学习记录-torchtext和Pytorch的实例( 使用神经网络训练Seq2Seq代码)
Pytorch学习记录-torchtext和Pytorch的实例1 0. PyTorch Seq2Seq项目介绍 1. 使用神经网络训练Seq2Seq 1.1 简介,对论文中公式的解读 1.2 数据预 ...
- Pytorch学习--编程实战:猫和狗二分类
Pytorch学习系列(一)至(四)均摘自<深度学习框架PyTorch入门与实践>陈云 目录: 1.程序的主要功能 2.文件组织架构 3. 关于`__init__.py` 4.数据处理 5 ...
- 新手必备 | 史上最全的PyTorch学习资源汇总
目录: PyTorch学习教程.手册 PyTorch视频教程 PyTorch项目资源 - NLP&PyTorch实战 - CV&PyTorch实战 PyTorch论 ...
- [深度学习] Pytorch学习(一)—— torch tensor
[深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% im ...
- pytorch学习笔记(6)--神经网络非线性激活
如果神经元的输出是输入的线性函数,而线性函数之间的嵌套任然会得到线性函数.如果不加非线性函数处理,那么最终得到的仍然是线性函数.所以需要在神经网络中引入非线性激活函数. 常见的非线性激活函数主要包括S ...
- Pytorch学习笔记(二)---- 神经网络搭建
记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # Al ...
- Pytorch学习笔记(一)---- 基础语法
书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and ...
- pytorch学习-WHAT IS PYTORCH
参考:https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor- ...
随机推荐
- k8s如何对外访问service
在Kubernetes(K8s)中,可以通过以下几种方式对外访问Service: 1.NodePort: 这是最常见的对外访问Service的方式.通过将Service的类型设置为NodePort,K ...
- ubuntu添加桌面快捷打开方式
不太喜欢ubuntu开机后空荡荡的桌面,希望可以有些像windows一样的快捷打开方式.看了一些博客,也自己探索了一下,发现了在ubuntu中添加软件自带的桌面快捷打开方式的方法. 在终端 cd /u ...
- 通达信金融终端解锁Level-2功能 续(202307)
外挂方式,不修改原程序.解锁Level-2 逐笔分析.对"非法访问"Say NO! LEVEL2逐笔分析破解后,仍然被防调试. 竞价分析,实时资金示例. 逆向通达信Level-2 ...
- 单体JOB向分布式JOB迁移案例
一.背景 1.1前言 相信大家在工作中多多少少都离不开定时任务吧,每个公司对定时任务的具体实现都不同.在一些体量小的公司或者一些个人独立项目,服务可能还是单体的,并且在服务器上只有一台实例部署,大多数 ...
- PAT甲级【1014 Waiting in Line】
考察双向链表 import java.io.IOException; import java.io.InputStreamReader; import java.io.StreamTokenizer; ...
- 云VR给当今的教育行业带来哪些契机
教育一直是国之根本大策,培养下一代高科技新型人才是新时代规划的重要建设目标.教育的授课方式也别出心裁,不断地涌现出教育的新模式.3DCAT 云VR别出心裁,为教育行业带来新的教学方式和简化管理的全新系 ...
- Flutter如何状态管理
目录介绍 01.什么是状态管理 02.状态管理方案分类 03.状态管理使用场景 04.Widget管理自己的状态 05.Widget管理子Widget状态 06.简单混合管理状态 07.全局状态如何管 ...
- Android打造万能自定义阴影控件
目录介绍 01.阴影效果有哪些实现方式 02.实现阴影效果Api 03.设置阴影需要注意哪些 04.常见Shape实现阴影效果 05.自定义阴影效果控件 06.如何使用该阴影控件 07.在recycl ...
- DialogFragment源码分析
目录介绍 1.最简单的使用方法 1.1 官方建议 1.2 最简单的使用方法 1.3 DialogFragment做屏幕适配 2.源码分析 2.1 DialogFragment继承Fragment 2. ...
- 一文讲透Java核心技术之高可扩展利器SPI
大家好,我是冰河~~ SPI的概念 JAVA SPI = 基于接口的编程+策略模式+配置文件 的动态加载机制 SPI的使用场景 Java是一种面向对象语言,虽然Java8开始支持函数式编程和Strea ...