4 微积分

在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。为了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。如图所示,内接多边形的等长边越多,就越接近圆。这个过程也被称为逼近法(method of exhaustion)

事实上,逼近法就是积分(integral calculus)的起源。2000多年后,微积分的另一支,微分(differentialcalculus)被发明出来。在微分学最重要的应用是优化问题,即考虑如何把事情做到最好。这种问题在深度学习中是无处不在的。在深度学习中,我们“训练”模型,不断更新它们,使它们在看到越来越多的数据时变得越来越好。通常情况下,变得更好意味着最小化一个损失函数(loss function),即一个衡量“模型有多糟糕”这个问题的分数。最终,我们真正关心的是生成一个模型,它能够在从未见过的数据上表现良好。但“训练”模型只能将模型与我们实际能看到的数据相拟合。因此,我们可以将拟合模型的任务分解为两个关键问题:

  • 优化(optimization):用模型拟合观测数据的过程;
  • 泛化(generalization):数学原理和实践者的智慧,能够指导我们生成出有效性超出用于训练的数据集本身的模型。

4.1 导数和微分

我们首先讨论导数的计算,这是几乎所有深度学习优化算法的关键步骤。在深度学习中,我们通常选择对于模型参数可微的损失函数。简而言之,对于每个参数,如果我们把这个参数增加或减少一个无穷小的量,可以知道损失会以多快的速度增加或减少,假设我们有一个函数\(f : \mathbb{R} \rightarrow \mathbb{R}\) ,其输入和输出都是标量。如果f的导数存在,这个极限被定义为

\[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

如果f在一个区间内的每个数上都是可微的,则此函数在此区间中是可微。如果f′(a)存在,则称f在a处是可微(differentiable)的。

我们可以将导数f′(x)解释为f(x)相对于x的瞬时(instantaneous)变化率。所谓的瞬时变化率是基于x中的变化h,且h接近0。为了更好地解释导数,让我们做一个实验。

%matplotlib inline
import numpy as np
from matplotlib_inline import backend_inline
def f(x):
return 3 * x ** 2 - 4 * x

当x = 1时,导数u′是2。

def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1
h=0.10000, numerical limit=2.30000
h=0.01000, numerical limit=2.03000
h=0.00100, numerical limit=2.00300
h=0.00010, numerical limit=2.00030
h=0.00001, numerical limit=2.00003

为了对导数的这种解释进行可视化,我们将使用matplotlib,这是一个Python中流行的绘图库。要配

置matplotlib生成图形的属性,我们需要定义几个函数。在下面,use_svg_display函数指定matplotlib软件包输出svg图表以获得更清晰的图像。

def use_svg_display(): #@save

    backend_inline.set_matplotlib_formats('svg')

我们定义set_figsize函数来设置图表大小。因为导入语句 from matplotlib mport pyplot as plt已标记为保存中。

def set_figsize(figsize=(3.5, 2.5)): #@save
"""设置matplotlib的图表大小"""
use_svg_display()
d2l.plt.rcParams['figure.figsize'] = figsize

下面的set_axes函数用于设置由matplotlib生成图表的轴的属性。

#@save
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""设置matplotlib的轴"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:
axes.legend(legend)
axes.grid()

通过这三个用于图形配置的函数,定义一个plot函数来简洁地绘制多条曲线。

#@save
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
"""绘制数据点"""
if legend is None:
legend = []
set_figsize(figsize)
axes = axes if axes else d2l.plt.gca()
# 如果X有一个轴,输出True
def has_one_axis(X):
return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)and not hasattr(X[0], "__len__"))
if has_one_axis(X):
X = [X]
if Y is None:
X, Y = [[]] * len(X), X
elif has_one_axis(Y):
Y = [Y]
if len(X) != len(Y):
X = X * len(Y)
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
if len(x):
axes.plot(x, y, fmt)
else:
axes.plot(y, fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)

现在我们可以绘制函数u = f(x)及其在x = 1处的切线y = 2x − 3,其中系数2是切线的斜率。

x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])

4.2 偏导数

到目前为止,我们只讨论了仅含一个变量的函数的微分。在深度学习中,函数通常依赖于许多变量。因此,我们需要将微分的思想推广到多元函数(multivariate function)上。

设\(y = f(x_1, x_2, . . . , x_n)\)是一个具有n个变量的函数。\(y\)关于第\(i\)个参数\(x_i\)的偏导数(partial derivative)为:

\[\frac{\partial f}{\partial x_i} = \lim_{{h \to 0}} \frac{f(x_1, \ldots, x_{i-1}, x_i + h, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_i, \ldots, x_n)}{h}
\]

4.3 梯度

我们可以连结一个多元函数对其所有变量的偏导数,以得到该函数的梯度(gradient)向量。具体而言,设

函数\(f: \mathbb{R}^n \rightarrow \mathbb{R}\)的输入是一个n维向量\(\mathbf{x} = [x_1, x_2, \ldots, x_n]^T\),并且输出是一个标量。函数f(x)相对于x的梯度是一个包含n个偏导数的向量:

\[\nabla f(\mathbf{x}) = \left[ \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right]^T
\]

4.4 链式法则

然而,上面方法可能很难找到梯度。这是因为在深度学习中,多元函数通常是复合(composite)的,所以难以应用上述任何规则来微分这些函数。幸运的是,链式法则可以被用来微分复合函数。

让我们先考虑单变量函数。假设函数y = f(u)和u = g(x)都是可微的,根据链式法则:

\[\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
\]

现在考虑一个更一般的场景,即函数具有任意数量的变量的情况。假设可微分函数y有变量 $( x_1, x_2, \ldots, x_n ) $,其中每个可微分函数 \(u_i\) 都有变量 \(( u_1, u_2, \ldots, u_m )\)。注意,y是 $( x_1, x_2, \ldots, x_n ) $的函数。链式法则给出:

\[\frac{{\partial y}}{{\partial x_i}} = \sum_{j=1}^{m} \frac{{\partial y}}{{\partial u_j}} \cdot \frac{{\partial u_j}}{{\partial x_i}}
\]

声明:

本系列学习笔记主要以《动手学深度学习》的pytorch版本为主。

详细见GitHub:https://github.com/d2l-ai/d2l-zh

或者 https://zh.d2l.ai/

【pytorch学习】之微积分的更多相关文章

  1. 【深度学习】Pytorch学习基础

    目录 pytorch学习 numpy & Torch Variable 激励函数 回归 区分类型 快速搭建法 模型的保存与提取 批训练 加速神经网络训练 Optimizer优化器 CNN MN ...

  2. Pytorch学习之源码理解:pytorch/examples/mnists

    Pytorch学习之源码理解:pytorch/examples/mnists from __future__ import print_function import argparse import ...

  3. Pytorch学习记录-torchtext和Pytorch的实例( 使用神经网络训练Seq2Seq代码)

    Pytorch学习记录-torchtext和Pytorch的实例1 0. PyTorch Seq2Seq项目介绍 1. 使用神经网络训练Seq2Seq 1.1 简介,对论文中公式的解读 1.2 数据预 ...

  4. Pytorch学习--编程实战:猫和狗二分类

    Pytorch学习系列(一)至(四)均摘自<深度学习框架PyTorch入门与实践>陈云 目录: 1.程序的主要功能 2.文件组织架构 3. 关于`__init__.py` 4.数据处理 5 ...

  5. 新手必备 | 史上最全的PyTorch学习资源汇总

    目录: PyTorch学习教程.手册 PyTorch视频教程 PyTorch项目资源      - NLP&PyTorch实战      - CV&PyTorch实战 PyTorch论 ...

  6. [深度学习] Pytorch学习(一)—— torch tensor

    [深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% im ...

  7. pytorch学习笔记(6)--神经网络非线性激活

    如果神经元的输出是输入的线性函数,而线性函数之间的嵌套任然会得到线性函数.如果不加非线性函数处理,那么最终得到的仍然是线性函数.所以需要在神经网络中引入非线性激活函数. 常见的非线性激活函数主要包括S ...

  8. Pytorch学习笔记(二)---- 神经网络搭建

    记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # Al ...

  9. Pytorch学习笔记(一)---- 基础语法

    书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and ...

  10. pytorch学习-WHAT IS PYTORCH

    参考:https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor- ...

随机推荐

  1. k8s如何对外访问service

    在Kubernetes(K8s)中,可以通过以下几种方式对外访问Service: 1.NodePort: 这是最常见的对外访问Service的方式.通过将Service的类型设置为NodePort,K ...

  2. ubuntu添加桌面快捷打开方式

    不太喜欢ubuntu开机后空荡荡的桌面,希望可以有些像windows一样的快捷打开方式.看了一些博客,也自己探索了一下,发现了在ubuntu中添加软件自带的桌面快捷打开方式的方法. 在终端 cd /u ...

  3. 通达信金融终端解锁Level-2功能 续(202307)

    外挂方式,不修改原程序.解锁Level-2 逐笔分析.对"非法访问"Say NO! LEVEL2逐笔分析破解后,仍然被防调试. 竞价分析,实时资金示例. 逆向通达信Level-2 ...

  4. 单体JOB向分布式JOB迁移案例

    一.背景 1.1前言 相信大家在工作中多多少少都离不开定时任务吧,每个公司对定时任务的具体实现都不同.在一些体量小的公司或者一些个人独立项目,服务可能还是单体的,并且在服务器上只有一台实例部署,大多数 ...

  5. PAT甲级【1014 Waiting in Line】

    考察双向链表 import java.io.IOException; import java.io.InputStreamReader; import java.io.StreamTokenizer; ...

  6. 云VR给当今的教育行业带来哪些契机

    教育一直是国之根本大策,培养下一代高科技新型人才是新时代规划的重要建设目标.教育的授课方式也别出心裁,不断地涌现出教育的新模式.3DCAT 云VR别出心裁,为教育行业带来新的教学方式和简化管理的全新系 ...

  7. Flutter如何状态管理

    目录介绍 01.什么是状态管理 02.状态管理方案分类 03.状态管理使用场景 04.Widget管理自己的状态 05.Widget管理子Widget状态 06.简单混合管理状态 07.全局状态如何管 ...

  8. Android打造万能自定义阴影控件

    目录介绍 01.阴影效果有哪些实现方式 02.实现阴影效果Api 03.设置阴影需要注意哪些 04.常见Shape实现阴影效果 05.自定义阴影效果控件 06.如何使用该阴影控件 07.在recycl ...

  9. DialogFragment源码分析

    目录介绍 1.最简单的使用方法 1.1 官方建议 1.2 最简单的使用方法 1.3 DialogFragment做屏幕适配 2.源码分析 2.1 DialogFragment继承Fragment 2. ...

  10. 一文讲透Java核心技术之高可扩展利器SPI

    大家好,我是冰河~~ SPI的概念 JAVA SPI = 基于接口的编程+策略模式+配置文件 的动态加载机制 SPI的使用场景 Java是一种面向对象语言,虽然Java8开始支持函数式编程和Strea ...