链接

题意很简洁不说了

题解:一开始我想直接暴力,复杂度是O(log(1e7)*sqrt(1e7))算出来是2e9,可能会复杂度爆炸,但是我看时限是10s,直接大力莽了一发暴力,没想到就过了= =

就是先打出1e7的素数表,然后挨个算即可

//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pii pair<int,int>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f; int mu[N],prime[N],sum[N];
bool mark[N];
int cnt;
void init()
{
mu[]=;
cnt=;
for(int i=;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt;j++)
{
int t=i*prime[j];
if(t>N)break;
mark[t]=;
if(i%prime[j]==){mu[t]=;break;}
else mu[t]=-mu[i];
}
}
for(int i=;i<N;i++)sum[i]=sum[i-]+mu[i];
}
int main()
{
init();
int n;
scanf("%d",&n);
ll ans=;
for(int i=;i<=cnt;i++)
{
int te=n/prime[i];
for(int j=,last;j<=te;j=last+)
{
last=te/(te/j);
ans+=(ll)(sum[last]-sum[j-])*(te/j)*(te/j);
}
}
printf("%lld\n",ans);
return ;
}
/******************** ********************/

HYSBZ - 2818莫比乌斯反演的更多相关文章

  1. HYSBZ - 2005 莫比乌斯反演

    链接 对于gcd(i,j)的位置来说,对答案的贡献是2*(gcd(i,j)-1)+1,所以答案ans ans=Σ(1<=i<=n)(1<=j<=m)2*(gcd(i,j)-1) ...

  2. HYSBZ - 2301 莫比乌斯反演

    链接 题解:直接用公式算,用容斥来减掉重复计算的部分 但是我犯了一个非常sb的错误,直接把abcd除k了,这样算a-1的时候就错了,然后举的例子刚好还没问题= = ,结果wa了好几发 //#pragm ...

  3. BZOJ - 2818 莫比乌斯反演 初步

    要使用分块的技巧 #include<iostream> #include<algorithm> #include<cstdio> #include<cstri ...

  4. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

  5. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  6. Gcd HYSBZ - 2818 (莫比乌斯反演)

    Gcd \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求 \(gcd\left(x,y\right) = p\) 的对数,其中\ ...

  7. bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...

  8. BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discu ...

  9. Bzoj 2818: Gcd(莫比乌斯反演)

    2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对 ...

随机推荐

  1. Python(数据库安装与基本语句)

    一.数据库相关概念 1.两种硬件扩展方式 a.垂直扩展:针对一台计算机 b.水平扩展:多台普通计算机 2.数据库相关概念 数据库服务器(本质就是一个台计算机,该计算机之上安装有数据库管理软件的服务端) ...

  2. window7安装MongoDB详细步骤

    1.下载安装包 下载地址:https://www.mongodb.com/download-center/community 2.鼠标右击安装包,进行安装 3.选自定义安装 4.千万不要勾选 5.打开 ...

  3. spring整合问题分析之-Write operations are not allowed in read-only mode (FlushMode.MANUAL): Turn your Session into FlushMode.COMMIT/AUTO or remove 'readOnly' marker from transaction definition.

    1.异常分析 Write operations are not allowed in read-only mode (FlushMode.MANUAL): Turn your Session into ...

  4. 005-TCP传输控制协议

    一.概述 传输控制协议(英语:Transmission Control Protocol,缩写为 TCP)是一种面向连接的.可靠的.基于字节流的传输层通信协议,由IETF的RFC 793定义.在简化的 ...

  5. likely(x)与unlikely(x) __builtin_expect

    本文讲的likely()和unlikely()两个宏,在linux内核代码和一些应用中可常见到它们的身影.实质上,这两个宏是关于GCC编译器内置宏__builtin_expect的使用. 顾名思义,l ...

  6. Django 分页器 缓存 信号 序列化

    阅读目录 分页器 缓存 信号 序列化 Django分页器  (paginator) 导入 from django.core.paginator import Paginator, EmptyPage, ...

  7. Keepalived 服务器状态监测

    keepalived简介: keepalived是一个类似于layer3, 4 & 5交换机制的软件,也就是我们平时说的第3层.第4层和第5层交换.Keepalived的作用是检测web服务器 ...

  8. DNS域名解析的配置

    /etc/resolv.conf它是DNS客户机配置文件,用于设置DNS服务器的IP地址及DNS域名,还包含了主机的域名搜索顺序.该文件是由域名解析 器(resolver,一个根据主机名解析IP地址的 ...

  9. Connection.setAutoCommit使用的注意事项

    http://blog.csdn.net/xiayimiaokuaile/article/details/6422032 setAutoCommit总的来说就是保持数据的完整性,一个系统的更新操作可能 ...

  10. 优秀 H5 案例收集 Vol.2(不定期更新)

    上期浏览:Vol.1 再见了,影史最性感的硬汉http://news.163.com/special/fdh5_wolverine/ 活出真我http://balfhcy.pernod-ricard- ...