一 整体架构优化

现在hive的整体框架如下,计算引擎不仅仅支持Map/Reduce,并且还支持Tez、Spark等。根据不同的计算引擎又可以使用不同的资源调度和存储系统。

整体架构优化点:

1 根据不同业务需求进行日期分区,并执行类型动态分区。

相关参数设置:

0.14中默认hive.exec.dynamic.partition=ture

2 为了减少磁盘存储空间以及I/O次数,对数据进行压缩

相关参数设置:

job输出文件按照BLOCK以Gzip方式进行压缩。

mapreduce.output.fileoutputformat.compress=true
mapreduce.output.fileoutputformat.compress.type=BLOCK
mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec

map输出结果也以Gzip进行压缩。

mapreduce.map.output.compress=true
mapreduce.map.output.compress.codec=org.apache.hadoop.io.compress.GzipCodec

对hive输出结果和中间结果进行压缩。

hive.exec.compress.output=true
hive.exec.compress.intermediate=true

3 hive中间表以SequenceFile保存,可以节约序列化和反序列化的时间

相关参数设置:

hive.query.result.fileformat=SequenceFile

4 yarn优化,在此不再展开,后面专门介绍。

二 MR阶段优化

hive操作符有:

执行流程为:

reduce切割算法:

相关参数设置,默认为:

hive.exec.reducers.max=999
hive.exec.reducers.bytes.per.reducer=1G

reduce task num=min{reducers.max,input.size/bytes.per.reducer},可以根据实际需求来调整reduce的个数。

三 JOB优化

1 本地执行

默认关闭了本地执行模式,小数据可以使用本地执行模式,加快执行速度。

相关参数设置:

hive.exec.mode.local.auto=true

默认本地执行的条件是,hive.exec.mode.local.auto.inputbytes.max=128MB, hive.exec.mode.local.auto.tasks.max=4,reduce task最多1个。

性能测试:

数据量(万) 操作 正常执行时间(秒) 本地执行时间(秒)
170 group by 36 16
80 count 34 6

2 mapjoin

默认mapjoin是打开的,

hive.auto.convert.join.noconditionaltask.size=10MB

装载到内存的表必须是通过scan的表(不包括group by等操作),如果join的两个表都满足上面的条件,/*mapjoin*/指定表格不起作用,只会装载小表到内存,否则就会选那个满足条件的scan表。

四 SQL优化

整体的优化策略如下:

  1. 去除查询中不需要的column
  2. Where条件判断等在TableScan阶段就进行过滤
  3. 利用Partition信息,只读取符合条件的Partition
  4. Map端join,以大表作驱动,小表载入所有mapper内存中
  5. 调整Join顺序,确保以大表作为驱动表
  6. 对于数据分布不均衡的表Group by时,为避免数据集中到少数的reducer上,分成两个map-reduce阶段。第一个阶段先用Distinct列进行shuffle,然后在reduce端部分聚合,减小数据规模,第二个map-reduce阶段再按group-by列聚合。
  7. 在map端用hash进行部分聚合,减小reduce端数据处理规模。

五 平台优化

1hive on tez

2 spark SQL大趋势

总结

上面主要介绍一些优化思想,有些优化点没有详细展开,后面分别介绍yarn的优化细节、SQL详细的优化实例以及我们在Tez、spark等框架优化结果。最后用一句话共勉:边coding,边优化,优化无止境。

Hive整体优化策略的更多相关文章

  1. Hive(六)hive执行过程实例分析与hive优化策略

    一.Hive 执行过程实例分析 1.join 对于 join 操作:SELECT pv.pageid, u.age FROM page_view pv JOIN user u ON (pv.useri ...

  2. hive工作中的一些优化策略

    1.hive抓取策略     hive.fetch.task.conversion = more/none     more不走mr,none走mr   2.explain 显示执行计划   3.设置 ...

  3. hive作业的优化策略

    Mapreduce自身的特点: 1.IO和网络负载大:优化策略:减少IO和网络负载. 2.内存负载不大.优化策略:增大内存使用率: 3.CPU负载不大.优化策略:增大CPU使用率: (hive的优化应 ...

  4. Hive优化策略

    hive优化目标 在有限的资源下,运行效率高. 常见问题 数据倾斜.Map数设置.Reduce数设置等 hive运行 查看运行计划 explain [extended] hql 例子 explain ...

  5. Hive性能优化

    1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先 ...

  6. Hive任务优化(1)

    一个Hive查询生成多个Map Reduce Job,一个Map Reduce Job又有Map,Reduce,Spill,Shuffle,Sort等多个阶段,所以针对Hive查询的优化可以大致分为针 ...

  7. 常见性能优化策略的总结 good

    阅读目录 代码 数据库 缓存 异步 NoSQL JVM调优 多线程与分布式 度量系统(监控.报警.服务依赖管理) 案例一:商家与控制区关系的刷新job 案例二:POI缓存设计与实现 案例三:业务运营后 ...

  8. Hive性能优化上的一些总结

    https://blog.csdn.net/mrlevo520/article/details/76339075 1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据 ...

  9. Hive性能优化(全面)

    1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次 ...

随机推荐

  1. Django templates加载css/js/image等静态资源

    配置步骤: 1.首先在应用下面创建static目录 2.将静态资源拷贝进去 3.在应用的settings.py文件中添加 import os BASE_PATH = os.path.dirname(o ...

  2. JS中数组方法的封装之slice

    slice方法的功能 // 1) : 数组的截取 // 2) :slice(m,n): 从数组索引m开始,截取到索引n,但是不包含n;[前包后不包] // slice(m) : 从索引m开始,截取到末 ...

  3. Leecode刷题之旅-C语言/python-169求众数

    /* * @lc app=leetcode.cn id=169 lang=c * * [169] 求众数 * * https://leetcode-cn.com/problems/majority-e ...

  4. QOS-交换机拥塞管理

    QOS-交换机拥塞管理 2018年7月7日 20:29 优先级映射: 根据信任的优先级,查找映射表,标记丢弃优先级和本地优先级 如果信任端口优先级,不同产品优先级标记方式可能不同,S3610处理过程如 ...

  5. 中国大学MOOC-C程序设计(浙大翁恺)—— 时间换算

    时间换算(10分) 题目内容: UTC是世界协调时,BJT是北京时间,UTC时间相当于BJT减去8.现在,你的程序要读入一个整数,表示BJT的时和分.整数的个位和十位表示分,百位和千位表示小时.如果小 ...

  6. BZOJ3436_小K的农场_KEY

    题目传送门 差分约束基础,对于每种关系建不同的边,求是否有负环. code: /************************************************************ ...

  7. DATA 转 16 进制

    // 转 16进制 编码 NSData *data = [NSData dataWithBytes:(const void *)dataOut length:(NSUInteger)dataOutMo ...

  8. C# 组装XML传给webserver+XML 返回获取多个xml,根据多个XML 返回dataset类型

    大致流程介绍: 传值给 webserver+XML ,得到webserver+XML多个返回值,组装成dataset形式返回 首先创建所需要的类型 DataSet ds = new DataSet() ...

  9. 第六阶段·数据库MySQL及NoSQL实践 第2章·Redis

    01-Redis简介 02-Redis基本安装启动 03-Redis的配置文件基本使用 04-Redis安全管理 05-Redis安全持久化-RDB持久化 06-Redis安全持久化-AOF持久化 0 ...

  10. C#冒泡排序法及优化

    冒泡排序法及优化: static void Main(string[] args) { , , , , , }; ; //冒泡排序法 ; i < sums.Length - ; i++) //总 ...