http://www.lydsy.com/JudgeOnline/problem.php?id=1087

Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

——————————————————————————————

n很小,暴力太麻烦,考虑状压。

设f[i][j][k]表示前i行放j个国王且第i行排成k情况的时候的情况数有多少。

g[i]表示一行国王排成i情况的时候有几个国王。

转移的时候显然是f[i][j][k]+=f[i-1][j-g[k]][l]

其中保证l合法,并且j最小值为g[k]+g[l]。

于是得到算法构架:

枚举i,枚举k,判断k的合法性,枚举l,判断l的合法性,枚举j,计算。

Q1:g怎么算?

A1:求g[i],我们可以通过将i右移,然后判断i最后一位为0还为1,所以答案为:g[i]=g[i>>1]+(i&1);

Q2:如何判断状态合法?

A2:我们判断相邻行i和j状态之间是否合法,首先判断i和j本身是否合法——通过将本身左移,再和原状态&一下,如果不为0就一定撞上了。

再考虑i和j,同样的思路,将j左/右移和i&(当然反过来也可以),如果不为0就一定撞上了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const int N=;
const int INF=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int g[N];
ll ans,f[][][N];
int main(){
int n,m;
scanf("%d%d",&n,&m);
if(m>||m>=n*n)puts("");
else{
int t=<<n;f[][][]=;
for(int i=;i<t;i++)g[i]=g[i>>]+(i&);
for(int i=;i<=n;i++){
for(int j=;j<t;j++){
if(g[j]<=m&&!(j&j>>)){
for(int k=;k<t;k++){
if(g[k]<=m&&!(k&k>>)&&!(k&j)&&!(j&k>>)&&!(j&k<<)){
for(int l=g[j]+g[k];l<=m;l++){
f[i][l][j]+=f[i-][l-g[j]][k];
}
}
}
}
}
}
for(int i=;i<t;i++)ans+=f[n][m][i];
printf("%lld\n",ans);
}
return ;
}

BZOJ1087:[SCOI2005]互不侵犯——题解的更多相关文章

  1. BZOJ1087 SCOI2005 互不侵犯King 【状压DP】

    BZOJ1087 SCOI2005 互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附 ...

  2. 状压入门--bzoj1087: [SCOI2005]互不侵犯King【状压dp】

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...

  3. [bzoj1087][scoi2005]互不侵犯king

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. 思路 首先,搜索可以放弃,因为这是一 ...

  4. BZOJ1087 [SCOI2005]互不侵犯King 状态压缩动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1087 题意概括 在n*n的棋盘上面放k个国王,使得他们互相无法攻击,问有多少种摆法. 题解 dp[ ...

  5. bzoj1087: [SCOI2005]互不侵犯King (codevs2451) 状压dp

    唔...今天学了状压就练练手... 点我看题 这题的话,我感觉算是入门题了QAQ... 然而我还是想了好久... 大致自己推出了方程,但是一直挂,调了很久选择了题解 坚持不懈的努力的调代码. 然后发现 ...

  6. [BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP

    在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... ...

  7. bzoj1087 [SCOI2005]互不侵犯

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  8. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  9. BZOJ1087[SCOI2005]互不侵犯——状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...

随机推荐

  1. linux下实现ssh无密码登录访问

    在192.168.9.51机器上 1)运行:#ssh-keygen -t rsa 2)然后拍两下回车(均选择默认) 3)运行: #ssh-copy-id -i /root/.ssh/id_rsa.pu ...

  2. iOS - Foundation相关

    1.NSString         A.创建的方式:            stringWithFormat:格式化字符串  ,创建字符串对象在堆区域            @"jack& ...

  3. Selenium 入门到精通系列:四

    Selenium 入门到精通系列 PS:鼠标右键.鼠标悬停.键盘操作方法 例子 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2019 ...

  4. 第八模块:算法&设计模式、企业应用 第2章 企业应用工具学习

    第八模块:算法&设计模式.企业应用 第2章 企业应用工具学习

  5. TensorFlow入门之MNIST最佳实践-深度学习

    在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...

  6. isX字符串方法

    islower():返回True,如果字符串至少有一个字母,并且所有字母都是小写: 例如:>>> spam='Hello world' >>> spam.islow ...

  7. 前端整合MathjaxJS的配置笔记

    这篇文章是我给Pinghsu主题添加数学公式功能的一个小教程,包含我大量的官方文档阅读后的实践,跟着这篇配置教程走,你可以做到给任何一个需要数学公式的站点添加支持. 教程如标题所述是针对 Mathja ...

  8. Python3 Tkinter-Message

    1.创建 from tkinter import * root=Tk() Message(root,text='hello Message').pack() root.mainloop() 2.属性 ...

  9. Python高级编程-多线程

    (一)进程线程概述: 很多同学都听说过,现代操作系统比如Mac OS X,UNIX,Linux,Windows等,都是支持“多任务”的操作系统. 什么叫“多任务”呢?简单地说,就是操作系统可以同时运行 ...

  10. Thunder团队贡献分分配规则

    规则1:基础分,拿出总分的40%进行均分. 规则2:参与会议者,每人次加0.5分. 规则3:积极贡献者,通过团队投票,半数及以上同意,每次加0.5分. 规则4:根据项目完成情况,核实每个人的工作量,投 ...