http://www.lydsy.com/JudgeOnline/problem.php?id=1087

Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

——————————————————————————————

n很小,暴力太麻烦,考虑状压。

设f[i][j][k]表示前i行放j个国王且第i行排成k情况的时候的情况数有多少。

g[i]表示一行国王排成i情况的时候有几个国王。

转移的时候显然是f[i][j][k]+=f[i-1][j-g[k]][l]

其中保证l合法,并且j最小值为g[k]+g[l]。

于是得到算法构架:

枚举i,枚举k,判断k的合法性,枚举l,判断l的合法性,枚举j,计算。

Q1:g怎么算?

A1:求g[i],我们可以通过将i右移,然后判断i最后一位为0还为1,所以答案为:g[i]=g[i>>1]+(i&1);

Q2:如何判断状态合法?

A2:我们判断相邻行i和j状态之间是否合法,首先判断i和j本身是否合法——通过将本身左移,再和原状态&一下,如果不为0就一定撞上了。

再考虑i和j,同样的思路,将j左/右移和i&(当然反过来也可以),如果不为0就一定撞上了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const int N=;
const int INF=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int g[N];
ll ans,f[][][N];
int main(){
int n,m;
scanf("%d%d",&n,&m);
if(m>||m>=n*n)puts("");
else{
int t=<<n;f[][][]=;
for(int i=;i<t;i++)g[i]=g[i>>]+(i&);
for(int i=;i<=n;i++){
for(int j=;j<t;j++){
if(g[j]<=m&&!(j&j>>)){
for(int k=;k<t;k++){
if(g[k]<=m&&!(k&k>>)&&!(k&j)&&!(j&k>>)&&!(j&k<<)){
for(int l=g[j]+g[k];l<=m;l++){
f[i][l][j]+=f[i-][l-g[j]][k];
}
}
}
}
}
}
for(int i=;i<t;i++)ans+=f[n][m][i];
printf("%lld\n",ans);
}
return ;
}

BZOJ1087:[SCOI2005]互不侵犯——题解的更多相关文章

  1. BZOJ1087 SCOI2005 互不侵犯King 【状压DP】

    BZOJ1087 SCOI2005 互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附 ...

  2. 状压入门--bzoj1087: [SCOI2005]互不侵犯King【状压dp】

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...

  3. [bzoj1087][scoi2005]互不侵犯king

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. 思路 首先,搜索可以放弃,因为这是一 ...

  4. BZOJ1087 [SCOI2005]互不侵犯King 状态压缩动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1087 题意概括 在n*n的棋盘上面放k个国王,使得他们互相无法攻击,问有多少种摆法. 题解 dp[ ...

  5. bzoj1087: [SCOI2005]互不侵犯King (codevs2451) 状压dp

    唔...今天学了状压就练练手... 点我看题 这题的话,我感觉算是入门题了QAQ... 然而我还是想了好久... 大致自己推出了方程,但是一直挂,调了很久选择了题解 坚持不懈的努力的调代码. 然后发现 ...

  6. [BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP

    在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... ...

  7. bzoj1087 [SCOI2005]互不侵犯

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  8. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  9. BZOJ1087[SCOI2005]互不侵犯——状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...

随机推荐

  1. 说一说VIN码识别,车架号识别那些事

    对于有车一族的朋友来说,日常接触比较多的是车牌.行驶证.驾驶证,而知道VIN码/车架号码的比较少. 其实,对于车辆来说,VIN码/车架号码非常重要,它就像人的身份证一样,VIN码/车架号码是车辆唯一的 ...

  2. 用列主元消去法分别解方程组Ax=b,用MATLAB程序实现(最有效版)

    数值分析里面经常会涉及到用MATLAB程序实现用列主元消去法分别解方程组Ax=b 具体的方法和代码以如下方程(3x3矩阵)为例进行说明: 用列主元消去法分别解方程组Ax=b,用MATLAB程序实现: ...

  3. HDU - 6440(费马小定理)

    链接:HDU - 6440 题意:重新定义加法和乘法,使得 (m+n)^p = m^p + n^p 成立,p是素数.,且satisfied that there exists an integer q ...

  4. CSP201612-1:中间数

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  5. SIFT特征原理与理解

    SIFT特征原理与理解 SIFT(Scale-invariant feature transform)尺度不变特征变换 SIFT是一种用来侦测和描述影像中局部性特征的算法,它在空间尺度中寻找极值点,并 ...

  6. 阿里校招内推C++岗位编程题第一题 空格最少的字符串

    给定一个字符串S和有效单词的字典D,请确定可以插入到S中的最小空格数,使得最终的字符串完全由D中的有效单词组成.并输出解. 如果没有解则应该输出n/a 例如: 输入: S = “ilikealibab ...

  7. Python运行的方式

    Python的运行方式多种多样,下面列举几种: 交互式 在命令行中输入python,然后在>>>提示符后面输入Python语句,这里需要注意: 1 语句前面不能有空格,否则会报错 2 ...

  8. 今年暑假不AC (贪心)

    Description “今年暑假不AC?” “是的.” “那你干什么呢?” “看世界杯呀,笨蛋!” “@#$%^&*%...” 确实如此,世界杯来了,球迷的节日也来了,估计很多ACMer也会 ...

  9. PHPCMS v9表单向导中怎么加入验证码

    表单想到比较简单,所以没有加入验证码的功能.网上的类似教程又大多数不准确.所以亲自测试了一下,发现下面的方法是可用的.希望对有需求的朋友们有所帮助. 1.首先是调用表单的页面加入验证码.表单js调用模 ...

  10. 测试报告M2

    1,项目简介我们已经在第一次测试报告中说过,这一次主要说一下场景测试实例 1.1测试人员 测试人员包括团队开发小组成员以及特邀测试用户组. 1)  团队内部测试主要针对网站支持的各功能组件进行一一测试 ...