【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=1257

【题目大意】

  给出正整数n和k,计算j(n,k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值

【题解】

  我们发现k%i=k-[k/i]*i,j(n,k)=n*k-∑[k/i]*i,我们知道[k/i]的取值不超过k^(1/2)个,
  并且在分布上是连续的,所以我们可以分段求和,对于段开头l,其段结尾r=k/[k/l]。

【代码】

#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
LL n,k;
int main(){
while(~scanf("%lld%lld",&n,&k)){
LL r,ans=n*k;
if(n>k)n=k;
for(LL l=1;l<=n;l=r+1){
LL u=k/l;
r=min(k/u,n);
ans-=(l+r)*(r-l+1)*u/2;
}printf("%lld\n",ans);
}return 0;
}

BZOJ 1257 [CQOI2007]余数之和sum(分块)的更多相关文章

  1. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  2. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  3. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  4. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  5. BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][St ...

  6. [BZOJ 1257] [CQOI2007] 余数之和sum 【数学】

    题目链接:BZOJ - 1257 题目分析 首先, a % b = a - (a/b) * b,那么答案就是 sigma(k % i) = n * k - sigma(k / i) * i     ( ...

  7. bzoj 1257: [CQOI2007]余数之和 (数学+分块)

    Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5 ...

  8. bzoj 1257 [CQOI2007]余数之和——数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( n\%i = n - \left \lfloor n/i \right \rfl ...

  9. BZOJ 1257 [CQOI2007]余数之和sum ——Dirichlet积

    [题目分析] 卷积很好玩啊. [代码] #include <cstdio> #include <cstring> #include <cmath> #include ...

随机推荐

  1. 【洛谷 P2756】 飞行员配对方案问题(二分图匹配,最大流)

    题目链接 这不是裸的二分图匹配吗? 而且匈牙利算法自带记录方案.. 但既然是网络流24题,那就用网络流来做吧. 具体就是从源点向左边每个点连一条流量为1的边,两边正常连边,流量都是一,右边所有点向汇点 ...

  2. Connections between cities(LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题目: Problem Description After World War X, a lot ...

  3. 5.0docer 网络链接

    docker0 :linux的虚拟网桥 虚拟网桥特点: 1.可以设置ip地址 2.相当于拥一个隐藏的虚拟网卡     安装网桥工具 apt-get install bridge-utils brctl ...

  4. spring项目中web-inf下不能引用页面资源

    1.spring项目结构 2.spring结构说明 web-inf目录是不对外开放的,外部没办法直接访问到(即通过url访问),只有通过映射来访问,如映射一个action或servlet通过服务器端跳 ...

  5. nginx 伪静态rewrite

    location正则写法 一个示例:   location = / { # 精确匹配 / ,主机名后面不能带任何字符串 [ configuration A ] } location / { # 因为所 ...

  6. 调用start()与run()的区别

    1.调用start()方法: 通知“线程规划器”当前线程已经准备就绪,等待调用线程对象的run()方法.这个过程就是让系统安排一个时间来调用Thread中的run()方法,使线程得到运行,启动线程,具 ...

  7. 【洛谷P3651】展翅翱翔之时

    难以吐槽出题人的中二病…… 这题有点类似ZJOI2008 骑士,先跑树上的,最后拆环即可. #include<bits/stdc++.h> #define N 100005 typedef ...

  8. [How to]简单易用的拷贝Mac文件路径方法

    效果: 在你想拷贝路径的文件夹或者文件上右键会出现 copy path 选项! 实现: 1.打开finder的的Automator组件 2.选择[服务]选项,点击[选取]按钮 3.搜索操作项目中[拷贝 ...

  9. git配置服务器版仓库

    1.git 可以使用四种主要的协议来传输数据:本地传输,SSH 协议,Git 协议和 HTTP 协议.现在使用360同步盘同步一个网络的仓库管理. 2.查看设置好的360同步盘的文件 3.创建空的仓库 ...

  10. JavaScript 正则表达式的入门与使用

    知道正则表达式已经很久了,粗略会看懂一些,不过以前没有系统的学习,最近在看<JS权威指南>,刚好看到了看到正则表达式部分,就比较系统的学习了正则表达式. 先说一下正则表达式的一些基本知识 ...