UVA 1626 Brackets sequence(括号匹配 + 区间DP)
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=105116#problem/E
题意:添加最少的括号,让每个括号都能匹配并输出
分析:dp[i][j]表示第i个到第j个需要添加的最少的括号,pos[i][j] = k;表示i到j间第k个需要加括号;
如果str[i]和str[j]匹配,那么dp[i][j] = max(dp[i + 1][j - 1], dp[i][j]);
如果str[i]和str[j]不匹配,那么dp[i][j] = max(dp[i][j], dp[i][k]+dp[k + 1][j]); i<= k < j;之前想过k为什么不能等于j,
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int MAX = ;
const int INF = 0x3f3f3f3f;
int dp[MAX][MAX],pos[MAX][MAX];
char str[MAX];
int n;
void DP()
{
n = strlen(str); memset(dp, , sizeof(dp));
for(int i = ; i < n; i++)
dp[i][i] = ;
for(int p = ; p < n; p++)
{
for(int i = ; i < n; i++)
{
int j = i + p;
if(j >= n)
break;
dp[i][j] = INF;
if( (str[i] == '(' && str[j] == ')') || ( str[i] == '[' && str[j] == ']' ) )
{
if(dp[i][j] > dp[i + ][j - ])
dp[i][j] = dp[i + ][j - ];
}
pos[i][j] = -;
for(int k = i; k < j; k++)
{
int temp = dp[i][k] + dp[k + ][j];
if(temp < dp[i][j])
{
dp[i][j] = temp;
pos[i][j] = k;
}
}
}
}
}
void Print(int beg, int End)
{
if(beg > End)
return;
if(beg == End)
{
if(str[beg] == '(' || str[beg] == ')')
printf("()");
if(str[beg] == '[' || str[beg] == ']')
printf("[]");
}
else
{
if(pos[beg][End] == -)
{
printf("%c", str[beg]);
Print(beg + , End - );
printf("%c", str[End]);
}
else
{
Print(beg, pos[beg][End]);
Print(pos[beg][End] + , End);
}
}
}
int main()
{
int t;
scanf("%d", &t);
getchar();
getchar();
for(int i = ; i < t; i++)
{
gets(str);
DP();
Print(, n - );
printf("\n");
if(i < t - )
printf("\n");
getchar();
} return ;
}
UVA 1626 Brackets sequence(括号匹配 + 区间DP)的更多相关文章
- poj 2955 Brackets 括号匹配 区间dp
题意:最多有多少括号匹配 思路:区间dp,模板dp,区间合并. 对于a[j]来说: 刚開始的时候,转移方程为dp[i][j]=max(dp[i][j-1],dp[i][k-1]+dp[k][j-1]+ ...
- poj2955括号匹配 区间DP
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5424 Accepted: 2909 Descript ...
- poj 2955 括号匹配 区间dp
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6033 Accepted: 3220 Descript ...
- 括号匹配 区间DP (经典)
描述给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来 ...
- POJ 1141 Brackets Sequence(括号匹配二)
题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...
- CSUOJ 1271 Brackets Sequence 括号匹配
Description ]. Output For each test case, print how many places there are, into which you insert a ' ...
- UVA 1626 Brackets sequence 区间DP
题意:给定一个括号序列,将它变成匹配的括号序列,可能多种答案任意输出一组即可.注意:输入可能是空串. 思路:D[i][j]表示区间[i, j]至少需要匹配的括号数,转移方程D[i][j] = min( ...
- UVa 1626 - Brackets sequence(区间DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA - 1626 Brackets sequence (区间dp)
题意:给定一个串,可能空串,或由'[',']','(',')'组成.问使其平衡所需添加最少的字符数,并打印平衡后的串. 分析:dp[i][j]表示区间(i,j)最少需添加的字符数. 1.递推. #in ...
随机推荐
- 分享一例脚本发版和tomcat重启脚本
线上有个网站业务部署在tomcat上,由于频繁上线修改,需要经常启动tomcat.tomcat服务自带的bin下没有重启脚本,下面分享一例脚本发版和tomcat重启脚本: 1)现将业务代码从svn里下 ...
- sql点滴46—Can't connect to MySQL server (10060)
如下图所示,链接远程的数据库提示Can't connect to MySQL server (10060). 遇到这个问题,我们首先做一个分析,导致这种状况出现的几种原因: a.bind-addres ...
- Linux 字符集转化
命令行"iconv --list" 查看Linux操作系统支持的字符集 iconv_open 设置字符集转化 --iconv_t iconv_open(const char *to ...
- [转]仿World Wind构造自己的C#版插件框架——WW插件机制精简改造
很久没自己写东西啦,早该好好总结一下啦!一个大师说过“一个问题不应该被解决两次!”,除了一个好脑筋,再就是要坚持总结. 最近需要搞个系统的插件式框架,我参照World Wind的插件方式构建了个插件框 ...
- 不可不知的C#基础 4. 延迟加载 -- 提高性能
延迟加载(lazy loading) 设计模式是为了避免一些无谓的性能开销而提出来的,所谓延迟加载就是当在真正需要数据(读取属性值)的时候,才真正执行数据加载操作. 有效使用它可以大大提高系统性能. ...
- c++中二进制和整数转化
#1,包含文件 #include<bitset> #2,整数转化成二进制 int a = 63; bitset<6> bs(a); #3,二进制转化成整数 int b = bs ...
- TinyFrame升级之二:数据底层访问部分
在上一篇中,我列举了框架的整体结构,下面我们将一一说明: 首先需要说明的是TinyFrame.Data. 它主要用于处理数据库底层操作.包含EF CodeFirst,Repository,Unitof ...
- java 十六进制颜色对照表
我们在编程中常常用到十六进制颜色码. 下面是颜色码对照表-英文名称-十六进制-RGB: 英文代码 形像颜色 HEX格式 RGB格式 LightPink 浅 ...
- Openwrt 初探
最近想研究一下Openwrt,于是开始搭建openwrt环境,虽然现在没有现成的板子,但是 可以先编译起来. openwrt的特点是基于下载 -> patch -> 编译 的一个工作模式, ...
- html5 canvas 粒子特效
不知不觉就已经好久没写过博客了,自从七月正式毕业后,离开了实习了将近九个月的老东家,进了鼠厂后,做的事都是比较传统的前端活,之前在tpy的时候只管做移动h5的特效以及小游戏,再加上实习所以时间比较充裕 ...