3.2.4.3.6. sklearn.ensemble.GradientBoostingRegressor

class sklearn.ensemble.GradientBoostingRegressor(loss='ls'learning_rate=0.1n_estimators=100subsample=1.0,min_samples_split=2min_samples_leaf=1min_weight_fraction_leaf=0.0max_depth=3init=None,random_state=Nonemax_features=Nonealpha=0.9verbose=0max_leaf_nodes=None,warm_start=False)[source]

Gradient Boosting for regression.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function.

Read more in the User Guide.

P

a

r

a

m

e

t

e

r

s

:

loss : {‘ls’, ‘lad’, ‘huber’, ‘quantile’}, optional (default=’ls’)

loss function to be optimized. ‘ls’ refers to least squares regression. ‘lad’ (least absolute deviation) is a highly robust loss function solely based on order information of the input variables. ‘huber’ is a combination of the two. ‘quantile’ allows quantile regression (usealpha to specify the quantile).

learning_rate : float, optional (default=0.1)

learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off between learning_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the number of nodes in the tree. Tune this parameter for best performance; the best value depends on the interaction of the input variables. Ignored if max_leaf_nodes is not None.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node.

subsample : float, optional (default=1.0)

The fraction of samples to be used for fitting the individual base learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. subsample interacts with the parametern_estimators. Choosing subsample < 1.0 leads to a reduction of variance and an increase in bias.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:
  • If int, then consider max_features features at each split.
  • If float, then max_features is a percentage and int(max_features * n_features)features are considered at each split.
  • If “auto”, then max_features=n_features.
  • If “sqrt”, then max_features=sqrt(n_features).
  • If “log2”, then max_features=log2(n_features).
  • If None, then max_features=n_features.

Choosing max_features < n_features leads to a reduction of variance and an increase in bias.

Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes.

alpha : float (default=0.9)

The alpha-quantile of the huber loss function and the quantile loss function. Only ifloss='huber' or loss='quantile'.

init : BaseEstimator, None, optional (default=None)

An estimator object that is used to compute the initial predictions. init has to provide fitand predict. If None it uses loss.init_estimator.

verbose : int, default: 0

Enable verbose output. If 1 then it prints progress and performance once in a while (the more trees the lower the frequency). If greater than 1 then it prints progress and performance for every tree.

warm_start : bool, default: False

When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just erase the previous solution.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

A

t

t

r

i

b

u

t

e

s

:

feature_importances_ : array, shape = [n_features]

The feature importances (the higher, the more important the feature).

oob_improvement_ : array, shape = [n_estimators]

The improvement in loss (= deviance) on the out-of-bag samples relative to the previous iteration. oob_improvement_[0] is the improvement in loss of the first stage over the initestimator.

train_score_ : array, shape = [n_estimators]

The i-th score train_score_[i] is the deviance (= loss) of the model at iteration i on the in-bag sample. If subsample == 1 this is the deviance on the training data.

loss_ : LossFunction

The concrete LossFunction object.

`init` : BaseEstimator

The estimator that provides the initial predictions. Set via the init argument orloss.init_estimator.

estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, 1]

The collection of fitted sub-estimators.

See also

DecisionTreeRegressorRandomForestRegressor

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

  1. Friedman, Stochastic Gradient Boosting, 1999

T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
fit(X, y[, sample_weight, monitor]) Fit the gradient boosting model.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
staged_decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
staged_predict(X) Predict regression target at each stage for X.
transform(X[, threshold]) Reduce X to its most important features.
__init__(loss='ls'learning_rate=0.1n_estimators=100subsample=1.0min_samples_split=2,min_samples_leaf=1min_weight_fraction_leaf=0.0max_depth=3init=Nonerandom_state=None,max_features=Nonealpha=0.9verbose=0max_leaf_nodes=Nonewarm_start=False)[source]
decision_function(*args**kwargs)[source]

DEPRECATED: and will be removed in 0.19

Compute the decision function of X.

Parameters:

X : array-like of shape = [n_samples, n_features]

The input samples.

Returns:

score : array, shape = [n_samples, n_classes] or [n_samples]

The decision function of the input samples. The order of the classes corresponds to that in the attribute classes_. Regression and binary classification produce an array of shape [n_samples].

feature_importances_
Return the feature importances (the higher, the more important the
feature).
Returns: feature_importances_ : array, shape = [n_features]
fit(Xysample_weight=Nonemonitor=None)[source]

Fit the gradient boosting model.

P

a

r

a

m

e

t

e

r

s:

X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the number of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification, labels must correspond to classes.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node.

monitor : callable, optional

The monitor is called after each iteration with the current iteration, a reference to the estimator and the local variables of _fit_stages as keyword arguments callable(i,self, locals()). If the callable returns True the fitting procedure is stopped. The monitor can be used for various things such as computing held-out estimates, early stopping, model introspect, and snapshoting.

R

e

t

u

r

n

s:

self : object

Returns self.

fit_transform(Xy=None**fit_params)[source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters:

X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns:

X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params : mapping of string to any

Parameter names mapped to their values.

predict(X)[source]

Predict regression target for X.

Parameters:

X : array-like of shape = [n_samples, n_features]

The input samples.

Returns:

y : array of shape = [n_samples]

The predicted values.

score(Xysample_weight=None)[source]

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.

Parameters:

X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns:

score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns: self :
staged_decision_function(*args**kwargs)[source]

DEPRECATED: and will be removed in 0.19

Compute decision function of X for each iteration.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters:

X : array-like of shape = [n_samples, n_features]

The input samples.

Returns:

score : generator of array, shape = [n_samples, k]

The decision function of the input samples. The order of the classes corresponds to that in the attribute classes_. Regression and binary classification are special cases with k == 1, otherwise k==n_classes.

staged_predict(X)[source]

Predict regression target at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters:

X : array-like of shape = [n_samples, n_features]

The input samples.

Returns:

y : generator of array of shape = [n_samples]

The predicted value of the input samples.

transform(Xthreshold=None)[source]

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For models with a coef_ for each class, the absolute sum over the classes is used.

Parameters:

X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater or equal are kept while the others are discarded. If “median” (resp. “mean”), then the threshold value is the median (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute threshold is used. Otherwise, “mean” is used by default.

Returns:

X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Demonstrate Gradient Boosting on the Boston housing dataset.

This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4.

print(__doc__)

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause import numpy as np
import matplotlib.pyplot as plt from sklearn import ensemble
from sklearn import datasets
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error ###############################################################################
# Load data
boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=13)
X = X.astype(np.float32)
offset = int(X.shape[0] * 0.9)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:] ###############################################################################
# Fit regression model
params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1,
'learning_rate': 0.01, 'loss': 'ls'}
clf = ensemble.GradientBoostingRegressor(**params) clf.fit(X_train, y_train)
mse = mean_squared_error(y_test, clf.predict(X_test))
print("MSE: %.4f" % mse) ###############################################################################
# Plot training deviance # compute test set deviance
test_score = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)):
test_score[i] = clf.loss_(y_test, y_pred) plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title('Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-',
label='Training Set Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-',
label='Test Set Deviance')
plt.legend(loc='upper right')
plt.xlabel('Boosting Iterations')
plt.ylabel('Deviance') ###############################################################################
# Plot feature importance
feature_importance = clf.feature_importances_
# make importances relative to max importance
feature_importance = 100.0 * (feature_importance / feature_importance.max())
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
plt.subplot(1, 2, 2)
plt.barh(pos, feature_importance[sorted_idx], align='center')
plt.yticks(pos, boston.feature_names[sorted_idx])
plt.xlabel('Relative Importance')
plt.title('Variable Importance')
plt.show()

Gradient Boosted Regression的更多相关文章

  1. Gradient Boosted Regression Trees 2

    Gradient Boosted Regression Trees 2   Regularization GBRT provide three knobs to control overfitting ...

  2. Facebook Gradient boosting 梯度提升 separate the positive and negative labeled points using a single line 梯度提升决策树 Gradient Boosted Decision Trees (GBDT)

    https://www.quora.com/Why-do-people-use-gradient-boosted-decision-trees-to-do-feature-transform Why ...

  3. 机器学习技法:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  4. 机器学习技法笔记:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  5. 【Gradient Boosted Decision Tree】林轩田机器学习技术

    GBDT之前实习的时候就听说应用很广,现在终于有机会系统的了解一下. 首先对比上节课讲的Random Forest模型,引出AdaBoost-DTree(D) AdaBoost-DTree可以类比Ad ...

  6. [11-3] Gradient Boosting regression

    main idea:用adaboost类似的方法,选出g,然后选出步长 Gredient Boosting for regression: h控制方向,eta控制步长,需要对h的大小进行限制 对(x, ...

  7. XGBoost 与 Boosted Tree

    http://www.52cs.org/?p=429 作者:陈天奇,毕业于上海交通大学ACM班,现就读于华盛顿大学,从事大规模机器学习研究. 注解:truth4sex  编者按:本文是对开源xgboo ...

  8. Boosted Tree

    原文:http://www.52cs.org/?p=429 作者:陈天奇,毕业于上海交通大学ACM班,现就读于华盛顿大学,从事大规模机器学习研究. 注解:truth4sex  编者按:本文是对开源xg ...

  9. 【转】XGBoost 与 Boosted Tree

    XGBoost 与 Boosted Tree http://www.52cs.org/?p=429 作者:陈天奇,毕业于上海交通大学ACM班,现就读于华盛顿大学,从事大规模机器学习研究. 注解:tru ...

随机推荐

  1. 非常有用的GitHub链接

    平常开发工作中,我经常取Github上搜索项目,Clone下来学习使用,在这个过程中,发现了好多比较好的Github地址,记录下来,分享出去. image 非常有用的GitHub链接(顺序不分先后): ...

  2. iOS 写给iOS开发者的React Native学习路线(转)

    我是一名iOS开发者,断断续续一年前开始接触React Native,最近由于工作需要,专职学习React Native也有一个多月了.网络上知识资源非常的多,但能让人豁然开朗.迅速学习的还是少数,我 ...

  3. Java 硬件同步机制 Swap 指令模拟 + 记录型信号量模拟

    学校实验存档//.. 以经典的生产者消费者问题作为背景. 进程同步方式接口: package method; /** * P表示通过,V表示释放 */ public interface Method ...

  4. ArcGIS 网络分析[1.1] 创建用于网络分析用的线类型shp文件[这个太基础了吧!]

    具体的准备,在上一篇就说过了,不再赘述. 阅读本篇前,需要的预备知识是:ArcGIS创建各种矢量数据的方法,了解地理坐标与投影坐标 本篇只创建单一的线数据,至于点数据,以后进行复杂的网络分析时再添加进 ...

  5. bzoj 3669: [Noi2014] 魔法森林 LCT版

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  6. bzoj 2119: 股市的预测

    Description 墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势.股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况.经过长时 ...

  7. whereis 命令详解

    whereis 作用:whereis命令只能用于程序名的搜索,而且只搜索二进制文件(参数-b).man说明文件(参数-m)和源代码文件(参数-s).如果省略参数,则返回所有信息.  参数:-b 定位可 ...

  8. Spring 自动装配及自动注册的相关配置

    Spring支持好几种自动装配(Autowiring)的方式,以及自动扫描并注册Bean的配置(在beans.xml中配置). 下文我们进行一个小结. 1. <context: annotati ...

  9. Linux下jira自启动设置

    jira 的启动主要依靠的是bin目录下的catalina.sh脚本,提供了如init脚本的start,stop等参数----------------------------------------- ...

  10. [编织消息框架][JAVA核心技术]动态代理应用1

    前面几篇介绍,终于到了应用阶段啦,我们来做一个RPC来加强学过的知识 做基础核心时先确定解决什么问题,提供什么服务,同将来扩展等 rpc 分两部份,一个是调用者,另一方是服务提供者 调用者只关心那个服 ...