POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】
Frogs' Neighborhood
| Time Limit: 5000MS | Memory Limit: 10000K | |||
| Total Submissions: 9897 | Accepted: 4137 | Special Judge | ||
Description
未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居。现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系。
Input
第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,..., xn(0 ≤ xi ≤ N)。
Output
对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。
Sample Input
3
7
4 3 1 5 4 2 1
6
4 3 1 4 2 0
6
2 3 1 1 2 1
Sample Output
YES
0 1 0 1 1 0 1
1 0 0 1 1 0 0
0 0 0 1 0 0 0
1 1 1 0 1 1 0
1 1 0 1 0 1 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0 NO YES
0 1 0 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
Source
题目大意:给出一个非负整数的序列,问这个序列是否是可图序列,而是否可图,再根据Havel-Hakimi定理的方法来构图
解题思路:
Havel—Hakimi定理:由非负数组成的非增序列s:d1,d2,···,dn(n>=2,d1>=1)是可图的,当仅当序列
s1:d2-1,d3-1,···,dd1+1 -1,dd1+2,····,dn
是可图的。序列s1中有n-1个非负数,s序列中d1后的前d1个度数减1后构成s1中的前d1个数。
判定过程:(1)对当前数列排序,使其呈递减
(2)从v【2】开始对其后v【1】个数字-1
(3)一直循环直到当前序列出现负数(即不是可图的情况)或者当前序列全为0 (可图)时退出。
3,举例:
序列S:7,7,4,3,3,3,2,1
删除序列S的首项 7 ,对其后的7项每项减1,
得到:6,3,2,2,2,1,0,
继续删除序列的首项6,
对其后的6项每项减1,
得到:2,1,1,1,0,-1,
到这一步出现了负数,因此该序列是不可图的
再举例:
序列:4 3 1 5 4 2 1
排序之后:5 4 4 3 2 1 1
删除5对后面5个数减1操作
3 3 2 1 0 1
排序
3 3 2 1 1 0
删除3对后面3个数减1操作
2 1 0 1 0
排序
2 1 1 0 0
删除2 对后面2个数减1操作
0 0 0 0
全为0,可图
下面给出AC详解代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 15
struct vertex
{
int degree;//顶点的度数
int index;//顶点的序号
}v[N];
int cmp(const void *a,const void *b)
{
return ((vertex*)b)->degree-((vertex*)a)->degree;//度数按照从大到小排序
}
int main()
{
int r,k,p,q;//循环变量
int i,j;//顶点序号(用于确定图中边的两个顶点)
int d1;//对剩下序列排序后的第一个顶点(度数最大的顶点)的度数
int T,n;//T表示测试数据个数,n表示湖泊个数
int Edge[N][N],flag;//用数组Edge构建邻接矩阵,flag为是否存在合理相邻关系的标志
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=;i<n;i++)
{
scanf("%d",&v[i].degree);
v[i].index=i;//按输入顺序给每个湖泊编号
}
memset(Edge,,sizeof(Edge));//数组清零
flag=;
for(int k=;k<n&&flag;k++)
{
qsort(v+k,n-k,sizeof(vertex),cmp);//对v数组后n-k个元素按非递增序列排序
i=v[k].index;//第k个顶点的序号
d1=v[k].degree;//第k个顶点的度数
if(d1>n-k-)//根据Havel-Hakimi定理可知,如果第k个元素的度数超过剩余的n-k个顶点数,显然不成立,标记为0
flag=;
for(r=;r<=d1&&flag;r++)
{
j=v[k+r].index;//后面d1个顶点中每个顶点的序号
if(v[k+r].degree<=)//根据Havel-Hakimi定理可知,对最大度数后面的d1个度数各减1后,出现了负数,显然不成立,标记为0
flag=;
v[k+r].degree--;
Edge[i][j]=Edge[j][i]=;//此题为无向图,无向图的任意两点存在一条边即可说明两点有关联,并且用Edge数组进行标记
}
}
if(flag)
{
puts("YES");
for(p=;p<n;p++)
{
for(q=;q<n;q++)
{
if(q)
printf(" ");
printf("%d",Edge[p][q]);//打印邻接矩阵
}
puts("");//换行符,用printf("\n")也行!
}
}
else puts("NO");
if(T)
puts("");//换行符
}
return ;
}
转载请注明:http://www.cnblogs.com/ECJTUACM-873284962/
POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】的更多相关文章
- poj 1659 Frogs' Neighborhood (DFS)
http://poj.org/problem?id=1659 Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total S ...
- poj 1659 Frogs' Neighborhood (贪心 + 判断度数序列是否可图)
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 6076 Accepted: 26 ...
- POJ 1659 Frogs' Neighborhood(Havel-Hakimi定理)
题目链接: 传送门 Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Description 未名湖附近共有N个大小湖泊L ...
- poj 1659 Frogs' Neighborhood( 青蛙的邻居)
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 9639 Accepted: 40 ...
- POJ 1659 Frogs' Neighborhood (Havel--Hakimi定理)
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 10545 Accepted: 4 ...
- poj 1659 Frogs' Neighborhood(出入度、可图定理)
题意:我们常根据无向边来计算每个节点的度,现在反过来了,已知每个节点的度,问是否可图,若可图,输出一种情况. 分析:这是一道定理题,只要知道可图定理,就是so easy了 可图定理:对每个节点的度从 ...
- poj 1659 Frogs' Neighborhood Havel-Hakimi定理 可简单图定理
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098136.html 给定一个非负整数序列$D=\{d_1,d_2,...d_n\}$,若存 ...
- Poj 1659.Frogs' Neighborhood 题解
Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和 ...
- POJ 1659 Frogs' Neighborhood (Havel定理构造图)
题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d ...
随机推荐
- Vue购物车实例
<div class="buyCarBox" id="buyCarBox" v-cloak> <div class="haveClo ...
- Node: 如何控制子进程的输出
大家知道,在一个node程序中,如果当前进程想要生成一个子进程,它可以调用child_process模块的spawn方法.spawn方法签名如下: child_process.spawn(comman ...
- Java I/O---类体系总结
1.Java I/O常用 (1)File 对文件系统中文件以及文件夹进行封装的对象,可以通过对象的思想来操作文件和文件夹. (2)FileInputStream 从文件系统中的某个文件中获得输入字节: ...
- springboot学习(一)——helloworld
以下内容,如有问题,烦请指出,谢谢 springboot出来也很久了,以前零散地学习了不少,不过很长时间了都没有在实际中使用过了,忘了不少,因此要最近准备抽时间系统的学习积累下springboot,给 ...
- 点分治X2
1.聪聪可可 点分治板子 然而想那个 t1[1]*t1[2]*2+t1[0]*t1[0]想了好久 就是最基本的组合方法 毕竟(2,5)和(5,2)可是要算两次的 画画图就好了 (不要像我一样盯着大佬们 ...
- bzoj 2727: [HNOI2012]双十字
Description 在C 部落,双十字是非常重要的一个部落标志.所谓双十字,如下面两个例子,由两条水平的和一条竖直的"1"线段组成,要求满足以下几个限制: 我们可以找到 5 个 ...
- nova创建虚拟机源码分析系列之三 PasteDeploy
上一篇博文介绍WSGI在nova创建虚拟机过程的作用是解析URL,是以一个最简单的例子去给读者有一个印象.在openstack中URL复杂程度也大大超过上一个例子.所以openstack使用了Past ...
- URL加载页面的过程
总体过程: 1.DNS解析 2.TCP连接 3.发送HTTP请求 4.服务器处理请求并返回HTTP报文 5.浏览器解析渲染页面 6.连接结束 一.DNS解析 在互联网中,每一台机计算机的唯一 标识是他 ...
- 【http转https】其之二:申请Let's Encrypt颁发SSL证书
文:铁乐猫 2017年1月12日 申请Let's Encrypt颁发SSL证书 由 ISRG(Internet Security Research Group,互联网安全研究小组)提供服务, ISRG ...
- K:枚举的线程安全性及其序列化问题
枚举是如何保证线程安全的且其在序列化和反序列化的操作中是单例的? 要想看源码,首先得有一个类吧,那么枚举类型到底是什么类呢?是enum吗?答案很明显不是,enum就和class一样,只是一个关 ...