HDU 2639 Bone Collector II(01背包变形【第K大最优解】)
Bone Collector II
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 4739 Accepted Submission(s): 2470
Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
题目大意:
见之前的收集骨头的博客,题意类似,给定背包容量,骨头的个数和每个骨头的价值,这次不是求在背包容量允许的情况下,最多装的价值,而是求在背包容量内,可以装的第k大价值,如果没有第k个最大值,那么输出0
输入包括多组样例,第一行输入一个T,样例的个数,接下来每个样例都有三行,第一行包括三个整数,N,V,K,分别代表骨头的个数,背包的容量,我们需要输出的第K个最大值,第二行包括N个数,分别代表骨头的数量和接下来一行有N个数,分别表示每种骨头的价值。
输出第K个最大价值,每个样例输出一行
思路:简单的01背包基础上做,要求的是第K个最大值,那么不用dp[j]=max(dp[j],dp[j-w[i]]+v[i])的状态转移方程,而是将两个值都记录下来,用for循环走一遍,记录下,容量为1到M的各个最大价值,dp[i][j]表示当背包容量为i时的第j个最大价值,最后只需要输出dp[m][k]即可!
下面给出AC代码:
#include <bits/stdc++.h>
using namespace std;
int w[];
int v[];
int dp[][];
int d1[];
int d2[];
int main()
{
int t,n,m,k,x,y,z,p;
scanf("%d",&t);
while(t--)
{
memset(w,,sizeof(w));
memset(v,,sizeof(v));
memset(dp,,sizeof(dp));
memset(d1,,sizeof(d1));
memset(d2,,sizeof(d2));
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++)
scanf("%d",&v[i]);
for(int i=;i<=n;i++)
scanf("%d",&w[i]);
for(int i=;i<=n;i++)//01背包变形
{
for(int j=m;j>=w[i];j--)
{
for(p=;p<=k;p++)
{
d1[p]=dp[j][p];
d2[p]=dp[j-w[i]][p]+v[i];
}
d1[p]=d2[p]=-;
x=y=z=;
while((d1[x]!=-||d2[y]!=-)&&z<=k)
{
if(d1[x]>d2[y])
{
dp[j][z]=d1[x];
x++;
}
else
{
dp[j][z]=d2[y];
y++;
}
if(dp[j][z-]!=dp[j][z])
z++;
}
}
}
printf("%d\n",dp[m][k]);
}
return ;
}
HDU 2639 Bone Collector II(01背包变形【第K大最优解】)的更多相关文章
- HDU 2639 Bone Collector II (01背包,第k解)
题意: 数据是常规的01背包,但是求的不是最大容量限制下的最佳解,而是第k佳解. 思路: 有两种解法: 1)网上普遍用的O(V*K*N). 2)先用常规01背包的方法求出背包容量限制下能装的最大价值m ...
- hdu–2369 Bone Collector II(01背包变形题)
题意:求解01背包价值的第K优解. 分析: 基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并. 首先看01背包求最优解的状态转移方程:\[dp\left[ j ...
- HDU 2639 Bone Collector II(01背包变型)
此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...
- HDU - 2639 Bone Collector II (01背包第k大解)
分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...
- HDOJ(HDU).2602 Bone Collector (DP 01背包)
HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...
- hdu 2639 Bone Collector II(01背包 第K大价值)
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU 2639 Bone Collector II【01背包 + 第K大价值】
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...
- hdu 2639 Bone Collector II
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- hdu 2639 Bone Collector II (01背包,求第k优解)
这题和典型的01背包求最优解不同,是要求第k优解,所以,最直观的想法就是在01背包的基础上再增加一维表示第k大时的价值.具体思路见下面的参考链接,说的很详细 参考连接:http://laiba2004 ...
随机推荐
- 转:iOS开发之多种Cell高度自适应实现方案的UI流畅度分析
本篇博客的主题是关于UI操作流畅度优化的一篇博客,我们以TableView中填充多个根据内容自适应高度的Cell来作为本篇博客的使用场景.当然Cell高度的自适应网上的解决方案是铺天盖地呢,今天我们的 ...
- <tangmuchw>之新手vue项目小记--新建.vue文件,运行项目,出现error:This dependency was not found...
错误码: This dependency was not found: * !!vue-style-loader!css-loader?{"minimize":false,&quo ...
- 关于文件上传的ajax交互
首先我们来了解一下上传文件 <input type="file"> input的file常用上传类型 后缀名 MIME名称 *.3gpp audio/3gpp, vid ...
- [知了堂学习笔记]_用JS制作《飞机大作战》游戏_第4讲(创建敌方飞机、敌方飞机发射子弹、玩家子弹击中敌方小飞机,小飞机死亡)
一.创建敌方飞机 1.思考创建思路: 创建敌方飞机思路与创建玩家飞机思路一样: (1)思考敌方飞机具备什么属性: 敌方飞机的图片.坐标.飞行速度.状态(是否被击中) 设置小飞机被击中时消失时间.飞机可 ...
- 【quickhybrid】iOS端的项目实现
前言 18年元旦三天内和朋友突击了下,勉强是将雏形做出来了,后续的API慢慢完善.(当然了,主力还是那个朋友,本人只是初涉iOS,勉强能看懂,修修改改而已) 大致内容如下: JSBridge核心交互部 ...
- MySQL5.6中date和string的转换和比较
Conversion & Comparison, involving strings and dates in MySQL 5.6 我们有张表,表中有一个字段dpt_date,SQL类型为da ...
- 编译Twitter的Heron时一直报错“heron/bazel_configure.py", line 25, in <module> import semver ImportError: No module named semver”如何处理。
今天编译heron的时候,从官方git到的源码bazel_configure的时候一直报错如下: Traceback (most recent call last): File , in <mo ...
- 通过js中的useragrent来判断设备是pc端还是移动端,跳转不同的地址
if(/AppleWebKit.*Mobile/i.test(navigator.userAgent) || (/MIDP|SymbianOS|NOKIA|SAMSUNG|LG|NEC|TCL|Alc ...
- 解决反序列化(Deserialize)无法找到程序集的错误
http://blog.csdn.net/w_s_q/article/details/5677536 在使用.NET序列化对象时,会将程序集信息也包含进去.如果将序列化之后的字节数组通过网络(或其他传 ...
- Python 项目实践三(Web应用程序)第五篇
接着上节继续学习,在这一节,我们将建立一个用户注册和身份验证系统,让用户能够注册账户,进而登录和注销.我们将创建一个新的应用程序,其中包含与处理用户账户相关的所有功能.我们还将对模型Topic稍做修改 ...