Bone Collector II

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 4739    Accepted Submission(s): 2470

Problem Description
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:
Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
 
Input
The first line contain a integer T , the number of cases. Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 
Output
One integer per line representing the K-th maximum of the total value (this number will be less than 231).
 
Sample Input
3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
 
Sample Output
12
2
0
 
Author
teddy
 
Source
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2639

题目大意:

见之前的收集骨头的博客,题意类似,给定背包容量,骨头的个数和每个骨头的价值,这次不是求在背包容量允许的情况下,最多装的价值,而是求在背包容量内,可以装的第k大价值,如果没有第k个最大值,那么输出0

输入包括多组样例,第一行输入一个T,样例的个数,接下来每个样例都有三行,第一行包括三个整数,N,V,K,分别代表骨头的个数,背包的容量,我们需要输出的第K个最大值,第二行包括N个数,分别代表骨头的数量和接下来一行有N个数,分别表示每种骨头的价值。

输出第K个最大价值,每个样例输出一行

思路:简单的01背包基础上做,要求的是第K个最大值,那么不用dp[j]=max(dp[j],dp[j-w[i]]+v[i])的状态转移方程,而是将两个值都记录下来,用for循环走一遍,记录下,容量为1到M的各个最大价值,dp[i][j]表示当背包容量为i时的第j个最大价值,最后只需要输出dp[m][k]即可!

下面给出AC代码:

 #include <bits/stdc++.h>
using namespace std;
int w[];
int v[];
int dp[][];
int d1[];
int d2[];
int main()
{
int t,n,m,k,x,y,z,p;
scanf("%d",&t);
while(t--)
{
memset(w,,sizeof(w));
memset(v,,sizeof(v));
memset(dp,,sizeof(dp));
memset(d1,,sizeof(d1));
memset(d2,,sizeof(d2));
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++)
scanf("%d",&v[i]);
for(int i=;i<=n;i++)
scanf("%d",&w[i]);
for(int i=;i<=n;i++)//01背包变形
{
for(int j=m;j>=w[i];j--)
{
for(p=;p<=k;p++)
{
d1[p]=dp[j][p];
d2[p]=dp[j-w[i]][p]+v[i];
}
d1[p]=d2[p]=-;
x=y=z=;
while((d1[x]!=-||d2[y]!=-)&&z<=k)
{
if(d1[x]>d2[y])
{
dp[j][z]=d1[x];
x++;
}
else
{
dp[j][z]=d2[y];
y++;
}
if(dp[j][z-]!=dp[j][z])
z++;
}
}
}
printf("%d\n",dp[m][k]);
}
return ;
}

HDU 2639 Bone Collector II(01背包变形【第K大最优解】)的更多相关文章

  1. HDU 2639 Bone Collector II (01背包,第k解)

    题意: 数据是常规的01背包,但是求的不是最大容量限制下的最佳解,而是第k佳解. 思路: 有两种解法: 1)网上普遍用的O(V*K*N). 2)先用常规01背包的方法求出背包容量限制下能装的最大价值m ...

  2. hdu–2369 Bone Collector II(01背包变形题)

    题意:求解01背包价值的第K优解. 分析: 基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并. 首先看01背包求最优解的状态转移方程:\[dp\left[ j ...

  3. HDU 2639 Bone Collector II(01背包变型)

    此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...

  4. HDU - 2639 Bone Collector II (01背包第k大解)

    分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...

  5. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

  6. hdu 2639 Bone Collector II(01背包 第K大价值)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  7. HDU 2639 Bone Collector II【01背包 + 第K大价值】

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

  8. hdu 2639 Bone Collector II

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  9. hdu 2639 Bone Collector II (01背包,求第k优解)

    这题和典型的01背包求最优解不同,是要求第k优解,所以,最直观的想法就是在01背包的基础上再增加一维表示第k大时的价值.具体思路见下面的参考链接,说的很详细 参考连接:http://laiba2004 ...

随机推荐

  1. 转:iOS开发之多种Cell高度自适应实现方案的UI流畅度分析

    本篇博客的主题是关于UI操作流畅度优化的一篇博客,我们以TableView中填充多个根据内容自适应高度的Cell来作为本篇博客的使用场景.当然Cell高度的自适应网上的解决方案是铺天盖地呢,今天我们的 ...

  2. <tangmuchw>之新手vue项目小记--新建.vue文件,运行项目,出现error:This dependency was not found...

    错误码: This dependency was not found: * !!vue-style-loader!css-loader?{"minimize":false,&quo ...

  3. 关于文件上传的ajax交互

    首先我们来了解一下上传文件 <input type="file"> input的file常用上传类型 后缀名 MIME名称 *.3gpp audio/3gpp, vid ...

  4. [知了堂学习笔记]_用JS制作《飞机大作战》游戏_第4讲(创建敌方飞机、敌方飞机发射子弹、玩家子弹击中敌方小飞机,小飞机死亡)

    一.创建敌方飞机 1.思考创建思路: 创建敌方飞机思路与创建玩家飞机思路一样: (1)思考敌方飞机具备什么属性: 敌方飞机的图片.坐标.飞行速度.状态(是否被击中) 设置小飞机被击中时消失时间.飞机可 ...

  5. 【quickhybrid】iOS端的项目实现

    前言 18年元旦三天内和朋友突击了下,勉强是将雏形做出来了,后续的API慢慢完善.(当然了,主力还是那个朋友,本人只是初涉iOS,勉强能看懂,修修改改而已) 大致内容如下: JSBridge核心交互部 ...

  6. MySQL5.6中date和string的转换和比较

    Conversion & Comparison, involving strings and dates in MySQL 5.6 我们有张表,表中有一个字段dpt_date,SQL类型为da ...

  7. 编译Twitter的Heron时一直报错“heron/bazel_configure.py", line 25, in <module> import semver ImportError: No module named semver”如何处理。

    今天编译heron的时候,从官方git到的源码bazel_configure的时候一直报错如下: Traceback (most recent call last): File , in <mo ...

  8. 通过js中的useragrent来判断设备是pc端还是移动端,跳转不同的地址

    if(/AppleWebKit.*Mobile/i.test(navigator.userAgent) || (/MIDP|SymbianOS|NOKIA|SAMSUNG|LG|NEC|TCL|Alc ...

  9. 解决反序列化(Deserialize)无法找到程序集的错误

    http://blog.csdn.net/w_s_q/article/details/5677536 在使用.NET序列化对象时,会将程序集信息也包含进去.如果将序列化之后的字节数组通过网络(或其他传 ...

  10. Python 项目实践三(Web应用程序)第五篇

    接着上节继续学习,在这一节,我们将建立一个用户注册和身份验证系统,让用户能够注册账户,进而登录和注销.我们将创建一个新的应用程序,其中包含与处理用户账户相关的所有功能.我们还将对模型Topic稍做修改 ...