[图形学] Chp8.7.2 梁友栋-Barsky线段裁剪算法
这节简单介绍了梁友栋-Barsky裁剪算法的原理,只有结论并没有过程,看过http://blog.csdn.net/daisy__ben/article/details/51941608这篇文章后,大概有了新的认识。
"
假设点P1P2W1W2的横坐标分别是x1,x2,w1,w2,线段P1P2与蓝色裁剪窗口W1W2(蓝色的线之间)的存在公共部分(可见部分)的充要条件是:

"
#include <GLUT/GLUT.h>
#include <iostream>
#include "lineliangbarsk.h"
#include "linebres.h" GLint clipTest (GLfloat p, GLfloat q, GLfloat * u1, GLfloat * u2)
{
GLfloat r;
GLint returnValue = true; if(p < 0.0)
{
r = q / p;
if(r > *u2)
{
returnValue = false;
}
else
{
if(r > *u1)
{
*u1 = r;
}
}
}
else
{
if(p > 0.0)
{
r = q / p;
if(r < *u1)
{
returnValue = false;
}
else
{
if(r < *u2)
{
*u2 = r;
}
}
}
else
{
if(q < 0.0)
{
returnValue = false;
}
}
}
return returnValue;
} void lineClipLiangBarsk(wcPt2D winMin, wcPt2D winMax, wcPt2D p1, wcPt2D p2)
{
GLfloat u1 = 0.0, u2 = 1.0, dx = p2.getx() - p1.getx(), dy; if(clipTest(-dx, p1.getx() - winMin.getx(), &u1, &u2))
{
if(clipTest(dx, winMax.getx() - p1.getx(), &u1, &u2))
{
dy = p2.gety() - p1.gety();
if(clipTest(-dy, p1.gety() - winMin.gety(), &u1, &u2))
{
if(clipTest(dy, winMax.gety() - p1.gety(), &u1, &u2))
{
if(u2 < 1.0)
{
p2.setCoords(p1.getx() + u2 * dx, p1.gety() + u2 * dy);
}
if(u1 > 0.0)
{
p1.setCoords(p1.getx() + u1 * dx, p1.gety() + u1 * dy);
}
lineBres(round(p1.getx()), round(p1.gety()), round(p2.getx()), round(p2.gety()));
std::cout << "liangbarsk : " << u1 << "," << u2 << std::endl;
std::cout << "liangbarsk : " << p1.getx() << "," << p1.gety() << "," << p2.getx() << "," << p2.gety() << std::endl;
}
}
}
}
}
https://github.com/p0e0o0p0l0e0/Computer_Graphics.git
c05938b3e669c1a04f86a54a69b5e2bb3066bd4e
参考:http://blog.csdn.net/daisy__ben/article/details/51941608
[图形学] Chp8.7.2 梁友栋-Barsky线段裁剪算法的更多相关文章
- 计算机图形学——梁友栋-Barsky算法
梁算法是计算机图形学上最经典的几个算法,也是目前唯一一个以中国人命名的出现在国内外计算机图形学课本的算法,我之前在介绍裁剪算法的时候介绍过这个算法 https://www.cnblogs.com/wk ...
- [图形学] 习题8.12 NLN二维线段裁剪算法实现
Nicholl-Lee-Nicholl二维线段裁剪算法相对于Cohen-Sutherland和Liang-Barsky算法来说,在求交点之前进行了线段端点相对于几个区域的判断,可以确切的知道要求交点的 ...
- [图形学] Chp8 使用双缓存创建帧动画
第八章的习题有动画的要求,之前并没有讲解动画如何制作,网上搜到一篇文章SCARA——OpenGL入门学习五六(三维变换.动画),按照里面的方法,使用双缓存和空闲回调函数实现了一个简单的帧动画. #in ...
- [图形学] Chp8.4 OpenGL 二维观察函数——视口
这节有几个显示窗口的控制函数,可以调整视口,创建子窗口,最小化为图标,设置图标名称,隐藏显示等. gluOrtho2D (xwmin, xwmax, ywmin, ywmax); // 定义二维裁剪窗 ...
- 理解Liang-Barsky裁剪算法的算法原理
0.补充知识向量点积:结果等于0, 两向量垂直; 结果大于0, 两向量夹角小于90度; 结果小于0, 两向量夹角大于90度.直线的参数方程:(x1, y1)和(x2, y2)两点确定的直线, 其参数方 ...
- 模拟试题C
模拟试题C 一.单项选择题(2′*14 =28′) 1.双线性法向插值法(Phong Shading)的优点是( ) A)法向计算精确 B)高光域准确 C)对光源和视点没有限制 D)速度较快 2.用编 ...
- Liang-Barsky直线段裁剪算法
Liang-Barsky直线段裁剪算法 梁友栋与Barsky提出的裁剪算法以直线的参数方程为基础,把判断直线段与窗口边界求交的 二维裁剪问题转化为求解一组不等式,确定直线段参数的一维裁剪问题.设起点为 ...
- Liang-Barsky算法
Liang-Barsky算法 在Cohen-Sutherland算法提出后,梁友栋和Barsky又针对标准矩形窗口提出了更快的Liang-Barsky直线段裁剪算法. 梁算法的主要思想: (1)用参数 ...
- 图形学3D渲染管线学习
图形学3D渲染管线 DX和OpenGL左右手坐标系不同,会有一些差距,得出的矩阵会不一样; OpenGL的投影平面不是视景体的近截面: 顶点(vertexs) 顶点坐标,颜色,法线,纹理坐标(UV), ...
随机推荐
- jquery源码 Callback
工具方法.对函数的统一管理. jquery2.0.3版本$.Callback()部分的源码如下: // String to Object options format cache var option ...
- rowid去重(删除表的重复记录)
-- 构造测试环境SQL> create table andy(id int,name varchar2(10));Table created.SQL>insert into andy v ...
- Lock(二)解决Lock问题
本文介绍通过Toad.EM及SQL语句来处理数据库产生的锁.在这之前需要对v$lock和v$session这两个数据字典有一定的了解. (一)使用Toad处理锁 (1)使用Toad的session b ...
- Vue.js高仿饿了么WebApp
介绍 学习Vue.js也有一阵子了,为了加深对Vue的理解及运用,做了一个小项目.这是一个高仿饿了么外卖WebApp,现已完成商品预览.商品详情.商家预览.添加购物.查看评论等功能. 部分截图 项目预 ...
- Java web开发中页面跳转小技巧——跳转后新页面在新窗口打开
最近学习Java web,在学习过程中想实现一个需求,就是在jsp页面跳转的时候,希望跳转后的新页面在新窗口中打开, 而不是覆盖原来的页面,这个需求使我困惑了好长时间,后来通过大海捞针似的在网上寻找方 ...
- [C++][OpenGL]自己写GUI(0)——介绍
文章可转载,转载请注明出处:http://www.cnblogs.com/collectionne/p/6928612.html.文章未完,如果不在博客园(cnblogs)发现本文,请访问前面的链接查 ...
- sql备份(导出脚本)
第一步: 右键需要备份的数据库(这里以MyDB为例)-->任务-->生成脚本
- numpy中linspace用法 (等差数列创建函数)
linspace 函数 是创建等差数列的函数, 最好是在 Matlab 语言中见到这个函数的,近期在学习Python 中的 Numpy, 发现也有这个函数,以下给出自己在学习过程中的一些总结. ( ...
- D语言需要大公司支持
Facebook开源flint:一个用D语言编写的C++静态代码分析器 http://www.csdn.net/article/2014-02-27/2818565-Building-and-open ...
- ajax、PHP、session做购物车
购物车网页代码 1.登录界面login.php <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ...