[图形学] Chp8.7.2 梁友栋-Barsky线段裁剪算法
这节简单介绍了梁友栋-Barsky裁剪算法的原理,只有结论并没有过程,看过http://blog.csdn.net/daisy__ben/article/details/51941608这篇文章后,大概有了新的认识。
"
假设点P1P2W1W2的横坐标分别是x1,x2,w1,w2,线段P1P2与蓝色裁剪窗口W1W2(蓝色的线之间)的存在公共部分(可见部分)的充要条件是:

"
#include <GLUT/GLUT.h>
#include <iostream>
#include "lineliangbarsk.h"
#include "linebres.h" GLint clipTest (GLfloat p, GLfloat q, GLfloat * u1, GLfloat * u2)
{
GLfloat r;
GLint returnValue = true; if(p < 0.0)
{
r = q / p;
if(r > *u2)
{
returnValue = false;
}
else
{
if(r > *u1)
{
*u1 = r;
}
}
}
else
{
if(p > 0.0)
{
r = q / p;
if(r < *u1)
{
returnValue = false;
}
else
{
if(r < *u2)
{
*u2 = r;
}
}
}
else
{
if(q < 0.0)
{
returnValue = false;
}
}
}
return returnValue;
} void lineClipLiangBarsk(wcPt2D winMin, wcPt2D winMax, wcPt2D p1, wcPt2D p2)
{
GLfloat u1 = 0.0, u2 = 1.0, dx = p2.getx() - p1.getx(), dy; if(clipTest(-dx, p1.getx() - winMin.getx(), &u1, &u2))
{
if(clipTest(dx, winMax.getx() - p1.getx(), &u1, &u2))
{
dy = p2.gety() - p1.gety();
if(clipTest(-dy, p1.gety() - winMin.gety(), &u1, &u2))
{
if(clipTest(dy, winMax.gety() - p1.gety(), &u1, &u2))
{
if(u2 < 1.0)
{
p2.setCoords(p1.getx() + u2 * dx, p1.gety() + u2 * dy);
}
if(u1 > 0.0)
{
p1.setCoords(p1.getx() + u1 * dx, p1.gety() + u1 * dy);
}
lineBres(round(p1.getx()), round(p1.gety()), round(p2.getx()), round(p2.gety()));
std::cout << "liangbarsk : " << u1 << "," << u2 << std::endl;
std::cout << "liangbarsk : " << p1.getx() << "," << p1.gety() << "," << p2.getx() << "," << p2.gety() << std::endl;
}
}
}
}
}
https://github.com/p0e0o0p0l0e0/Computer_Graphics.git
c05938b3e669c1a04f86a54a69b5e2bb3066bd4e
参考:http://blog.csdn.net/daisy__ben/article/details/51941608
[图形学] Chp8.7.2 梁友栋-Barsky线段裁剪算法的更多相关文章
- 计算机图形学——梁友栋-Barsky算法
梁算法是计算机图形学上最经典的几个算法,也是目前唯一一个以中国人命名的出现在国内外计算机图形学课本的算法,我之前在介绍裁剪算法的时候介绍过这个算法 https://www.cnblogs.com/wk ...
- [图形学] 习题8.12 NLN二维线段裁剪算法实现
Nicholl-Lee-Nicholl二维线段裁剪算法相对于Cohen-Sutherland和Liang-Barsky算法来说,在求交点之前进行了线段端点相对于几个区域的判断,可以确切的知道要求交点的 ...
- [图形学] Chp8 使用双缓存创建帧动画
第八章的习题有动画的要求,之前并没有讲解动画如何制作,网上搜到一篇文章SCARA——OpenGL入门学习五六(三维变换.动画),按照里面的方法,使用双缓存和空闲回调函数实现了一个简单的帧动画. #in ...
- [图形学] Chp8.4 OpenGL 二维观察函数——视口
这节有几个显示窗口的控制函数,可以调整视口,创建子窗口,最小化为图标,设置图标名称,隐藏显示等. gluOrtho2D (xwmin, xwmax, ywmin, ywmax); // 定义二维裁剪窗 ...
- 理解Liang-Barsky裁剪算法的算法原理
0.补充知识向量点积:结果等于0, 两向量垂直; 结果大于0, 两向量夹角小于90度; 结果小于0, 两向量夹角大于90度.直线的参数方程:(x1, y1)和(x2, y2)两点确定的直线, 其参数方 ...
- 模拟试题C
模拟试题C 一.单项选择题(2′*14 =28′) 1.双线性法向插值法(Phong Shading)的优点是( ) A)法向计算精确 B)高光域准确 C)对光源和视点没有限制 D)速度较快 2.用编 ...
- Liang-Barsky直线段裁剪算法
Liang-Barsky直线段裁剪算法 梁友栋与Barsky提出的裁剪算法以直线的参数方程为基础,把判断直线段与窗口边界求交的 二维裁剪问题转化为求解一组不等式,确定直线段参数的一维裁剪问题.设起点为 ...
- Liang-Barsky算法
Liang-Barsky算法 在Cohen-Sutherland算法提出后,梁友栋和Barsky又针对标准矩形窗口提出了更快的Liang-Barsky直线段裁剪算法. 梁算法的主要思想: (1)用参数 ...
- 图形学3D渲染管线学习
图形学3D渲染管线 DX和OpenGL左右手坐标系不同,会有一些差距,得出的矩阵会不一样; OpenGL的投影平面不是视景体的近截面: 顶点(vertexs) 顶点坐标,颜色,法线,纹理坐标(UV), ...
随机推荐
- 局域网内部署 Docker Registry
在局域网内部署 Docker Registry 可以极大的提升平时 pull.push 镜像的速度,从而缩短自动化操作的过程.同时也可以缓解带宽不足的问题,真是一举多得.本文将从创建单机的 Docke ...
- Ultimus BPM 金融与证券行业应用解决方案
Ultimus BPM 金融与证券行业应用解决方案 行业应用需求 金融服务业的整合与全球化发展,带来高度竞争的国际市场,所牵涉的产业包括了商业.贷款.投资银行,以及保险公司和许多其它为企业和消费者提供 ...
- iOS学习之应用之间的操作(转发)
首先要说的是每一个APP都可以设置一个自己独有的URL,APP应用之间的操作就是通过这个URL来实现的! 1.如何配置自己应用的URL? 关于自己的URL,作为资深的程序猿都会想到 Info.plis ...
- Linux与mv命令结合,移动文件至指定目录
转自:http://blog.csdn.net/hardwin/article/details/7711635 把当前目录下面的file(不包括目录),移动到/opt/shell find . - ...
- PF2.1版本总结,在设计过程中遇到的问题以及技术分享
在距离上一次的版本发布已经过去4个月的时间,因为个人的能力以及时间有限,所以这次的版本会推迟这么久.可是无论怎样,PF2.1带着自身的完善总算不负所望推出.在这次的版本调整中让我深有体会到了程序设计中 ...
- 关机和重启Linux命令
常用命令: shoutdown -h 10 十分钟后关机 shoutdown -r 10 十分钟重启 shoutdow -h now 立刻关机 shoutdow -r now 立刻重启 不安全的 ...
- GPU编程--Shared Memory(4)
GPU的内存按照所属对象大致分为三类:线程独有的.block共享的.全局共享的.细分的话,包含global, local, shared, constant, and texture memoey, ...
- 读Zepto源码之样式操作
这篇依然是跟 dom 相关的方法,侧重点是操作样式的方法. 读Zepto源码系列文章已经放到了github上,欢迎star: reading-zepto 源码版本 本文阅读的源码为 zepto1.2. ...
- 利用arpspoof和urlsnarf 进行ARP嗅探
地址解析协议 (ARP, Address Resolution Protocol) 是如何将网络设备的MAC地址和其IP地址关联起来的,这样在同一个局域网内的设备就能相互知道彼此的存在.ARP基本上就 ...
- ASP.NET MVC5(三):表单和HTML辅助方法
表单的使用 Action和Method特性 Action特性用以告知浏览器信息发往何处,因此,Action特性后面需要包含一个Url地址.这里的Url地址可以是相对的,也可以是绝对的.如下Form标签 ...