这节简单介绍了梁友栋-Barsky裁剪算法的原理,只有结论并没有过程,看过http://blog.csdn.net/daisy__ben/article/details/51941608这篇文章后,大概有了新的认识。

"

假设点P1P2W1W2的横坐标分别是x1,x2,w1,w2,线段P1P2与蓝色裁剪窗口W1W2(蓝色的线之间)的存在公共部分(可见部分)的充要条件是:

max(min(x1,x2), min(w1,w2))≤ min(max(x1,x2), max(w1,w2))
即所谓左端点中大者<=右端点中的小者
"
 
  线段上的点满足y=x1+u(x2-x1) = x1 + u*△x。 其中0<=u<=1。
  u1决定了线段在裁剪区域内的左侧点,u2决定了在裁剪区域内右侧的点。左点yl = x1 + u1 * △x,右点yr = x1 + u2 * △x,且必须满足0 <= u1 <= u2 <= 1.
  这时,求解u1和u2是梁友栋-Barsky线段裁剪算法的目的,
 
 
 
 
 
 
 
(8.18)(8.19)
 
 
  对于书中的公式(8.18),求等式,即为线段与4个边界的交点u值。
 
"

r不等于0的时候,对于上面四个不等式,当rk < 0时 ,u >= qk/rk,当rk>0时 u <= qk/rk,则点P才能位于裁剪窗口之内。同理,假如P已经落在了裁剪窗口之内,u一定大于等于所有rk<0对应的uk的最大值,而小于等于所有rk>0时对应的uk最小值。

"

  代码中因此就有了函数GLint clipTest(GLfloat p, GLfloat q, GLfloat * u1, GLfloat * u2)。当p<0时,要获得对应的u,如果这个u>u2,则舍弃;如果u<u2并且u>u1,则u1=u。若p>0时,如果这个u<u1则舍弃;如果u<u2,则u2=u。 传入的p,q分别由公式(8.19)确定。由此计算最多4次来获得u1和u2.
 
 #include <GLUT/GLUT.h>
#include <iostream>
#include "lineliangbarsk.h"
#include "linebres.h" GLint clipTest (GLfloat p, GLfloat q, GLfloat * u1, GLfloat * u2)
{
GLfloat r;
GLint returnValue = true; if(p < 0.0)
{
r = q / p;
if(r > *u2)
{
returnValue = false;
}
else
{
if(r > *u1)
{
*u1 = r;
}
}
}
else
{
if(p > 0.0)
{
r = q / p;
if(r < *u1)
{
returnValue = false;
}
else
{
if(r < *u2)
{
*u2 = r;
}
}
}
else
{
if(q < 0.0)
{
returnValue = false;
}
}
}
return returnValue;
} void lineClipLiangBarsk(wcPt2D winMin, wcPt2D winMax, wcPt2D p1, wcPt2D p2)
{
GLfloat u1 = 0.0, u2 = 1.0, dx = p2.getx() - p1.getx(), dy; if(clipTest(-dx, p1.getx() - winMin.getx(), &u1, &u2))
{
if(clipTest(dx, winMax.getx() - p1.getx(), &u1, &u2))
{
dy = p2.gety() - p1.gety();
if(clipTest(-dy, p1.gety() - winMin.gety(), &u1, &u2))
{
if(clipTest(dy, winMax.gety() - p1.gety(), &u1, &u2))
{
if(u2 < 1.0)
{
p2.setCoords(p1.getx() + u2 * dx, p1.gety() + u2 * dy);
}
if(u1 > 0.0)
{
p1.setCoords(p1.getx() + u1 * dx, p1.gety() + u1 * dy);
}
lineBres(round(p1.getx()), round(p1.gety()), round(p2.getx()), round(p2.gety()));
std::cout << "liangbarsk : " << u1 << "," << u2 << std::endl;
std::cout << "liangbarsk : " << p1.getx() << "," << p1.gety() << "," << p2.getx() << "," << p2.gety() << std::endl;
}
}
}
}
}

https://github.com/p0e0o0p0l0e0/Computer_Graphics.git

c05938b3e669c1a04f86a54a69b5e2bb3066bd4e

参考:http://blog.csdn.net/daisy__ben/article/details/51941608

 

[图形学] Chp8.7.2 梁友栋-Barsky线段裁剪算法的更多相关文章

  1. 计算机图形学——梁友栋-Barsky算法

    梁算法是计算机图形学上最经典的几个算法,也是目前唯一一个以中国人命名的出现在国内外计算机图形学课本的算法,我之前在介绍裁剪算法的时候介绍过这个算法 https://www.cnblogs.com/wk ...

  2. [图形学] 习题8.12 NLN二维线段裁剪算法实现

    Nicholl-Lee-Nicholl二维线段裁剪算法相对于Cohen-Sutherland和Liang-Barsky算法来说,在求交点之前进行了线段端点相对于几个区域的判断,可以确切的知道要求交点的 ...

  3. [图形学] Chp8 使用双缓存创建帧动画

    第八章的习题有动画的要求,之前并没有讲解动画如何制作,网上搜到一篇文章SCARA——OpenGL入门学习五六(三维变换.动画),按照里面的方法,使用双缓存和空闲回调函数实现了一个简单的帧动画. #in ...

  4. [图形学] Chp8.4 OpenGL 二维观察函数——视口

    这节有几个显示窗口的控制函数,可以调整视口,创建子窗口,最小化为图标,设置图标名称,隐藏显示等. gluOrtho2D (xwmin, xwmax, ywmin, ywmax); // 定义二维裁剪窗 ...

  5. 理解Liang-Barsky裁剪算法的算法原理

    0.补充知识向量点积:结果等于0, 两向量垂直; 结果大于0, 两向量夹角小于90度; 结果小于0, 两向量夹角大于90度.直线的参数方程:(x1, y1)和(x2, y2)两点确定的直线, 其参数方 ...

  6. 模拟试题C

    模拟试题C 一.单项选择题(2′*14 =28′) 1.双线性法向插值法(Phong Shading)的优点是( ) A)法向计算精确 B)高光域准确 C)对光源和视点没有限制 D)速度较快 2.用编 ...

  7. Liang-Barsky直线段裁剪算法

    Liang-Barsky直线段裁剪算法 梁友栋与Barsky提出的裁剪算法以直线的参数方程为基础,把判断直线段与窗口边界求交的 二维裁剪问题转化为求解一组不等式,确定直线段参数的一维裁剪问题.设起点为 ...

  8. Liang-Barsky算法

    Liang-Barsky算法 在Cohen-Sutherland算法提出后,梁友栋和Barsky又针对标准矩形窗口提出了更快的Liang-Barsky直线段裁剪算法. 梁算法的主要思想: (1)用参数 ...

  9. 图形学3D渲染管线学习

    图形学3D渲染管线 DX和OpenGL左右手坐标系不同,会有一些差距,得出的矩阵会不一样; OpenGL的投影平面不是视景体的近截面: 顶点(vertexs) 顶点坐标,颜色,法线,纹理坐标(UV), ...

随机推荐

  1. OpenGL: Rotation vector sensor of Android and Device motion of iOS

    为了实现一个全景图片展示的功能,需要借助手机的姿态传感器,实现一个这样的功能:当手机旋转时,视角也跟着旋转(读者若理解不能,可以参考下现在流行的 VR 应用,使用陀螺仪模式时的效果,亦可称作" ...

  2. mac下使用命令行打包出现bash gradle command not found的解决方案

    命令行打包的时候出现 bash gradle command not found这个问题,主要是因为gradle环境丢失.需要重新配置gradle的环境变量. 1. gradle路径的查找 然后gra ...

  3. 2017 UESTC Training for Graph Theory

    图论姿势太弱,这套题做了好久.. A:枚举最短那条边,然后最小生成树那种操作,1 和 n 联通就算答案 B:考虑到假如我们能凑出x的话,那很明显我们也能凑出任意数表示x + ai,考虑选取一个ai,然 ...

  4. wiringPi安装

    wiringPi安装   更新软件,输入以下指令:   sudo apt-get update   sudo apt-get upgrade   通过GIT获得wiringPi的源代码   git c ...

  5. ehcache-----在spring和hibernate下管理ehcache和query cache

    1. 在Hibernate配置文件中设置: <!-- Hibernate SessionFactory --> <bean id="sessionFactory" ...

  6. 4.docker学习之镜像

    镜像 我们知道,我们想在Windows操作系统上跑Linux,需要安装一个虚拟机程序,然后下载一个Linux镜像,在该虚拟机程序中创建一个虚拟机,并使用该镜像安装对应的Linux操作系统,安装好之后, ...

  7. VR大时代-全景智慧城市搭建是一个任重而道远的任务

    全景智慧城市搭建是一个任重而道远的任务,但是也促进了实体市场的蓬勃发展与进步.VR技术改变了人们以往的娱乐方式,而全景智慧城市将会彻底改变人们的生活习惯.VR是未来的计算平台,更是人力发展历史中,技术 ...

  8. C# 特性参数(注解属性加在参数前面)

    特性参数 webapi 框架里有很多特性参数,为了解除一些新人的疑惑,写个小例子分享下. class Program { static void Main(string[] args) { var m ...

  9. 一天搞定CSS: 清除浮动(float)--13

    上一节已经说明了为什么要清除浮动了.这里我们就来解决浮动产生的各种问题. 为什么要清楚浮动? 地址:http://blog.csdn.net/baidu_37107022/article/detail ...

  10. Java IO流之缓冲流

    一.缓冲流简介 二.BufferedInputStream 三.其他三种缓冲流