Description

小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达。游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走,若走到某个村庄中有宝物,则视为找到该村庄内的宝物,直到找到所有宝物并返回到最初转移到的村庄为止。小B希望评测一下这个游戏的难度,因此他需要知道玩家找到所有宝物需要行走的最短路程。但是这个游戏中宝物经常变化,有时某个村庄中会突然出现宝物,有时某个村庄内的宝物会突然消失,因此小B需要不断地更新数据,但是小B太懒了,不愿意自己计算,因此他向你求助。为了简化问题,我们认为最开始时所有村庄内均没有宝物

Input

第一行,两个整数N、M,其中M为宝物的变动次数。

接下来的N-1行,每行三个整数x、y、z,表示村庄x、y之间有一条长度为z的道路。
接下来的M行,每行一个整数t,表示一个宝物变动的操作。若该操作前村庄t内没有宝物,则操作后村庄内有宝物;若该操作前村庄t内有宝物,则操作后村庄内没有宝物。

Output

M行,每行一个整数,其中第i行的整数表示第i次操作之后玩家找到所有宝物需要行走的最短路程。若只有一个村庄内有宝物,或者所有村庄内都没有宝物,则输出0。

Sample Input

4 5
1 2 30
2 3 50
2 4 60
2
3
4
2
1

Sample Output

0
100
220
220
280

HINT

1<=N<=100000

1<=M<=100000
对于全部的数据,1<=z<=10^9

Source

Round 1 感谢yts1999上传

首先答案是路径的并的权值和乘2,因为每条边至少需要经过两次(一去一回),而且经过两次必然可以完成遍历。。。

hzwer的做法,答案是dfs序相邻两点距离和加上首尾的距离和,这样保证了每条边都经过了两遍。。。

根据虚树那套理论:

考虑dfs序相邻的两个点x,y和其Lca(dfn[Lca]<=dfn[x]<dfn[y])的关系只有两种情况:

1.x=Lca;

那么y在x的子树内,并且是一棵新的子树,这样x->y的路径被第一次经过。。。

2.x和y分居在Lca的两棵不同子树中,并且我们知道x是Lca的某个子树的叶子节点(即Lca->x的所有路径都被经过了一次),

而y是Lca的一棵新子树,那么从x->y的路径,经过的路径就是从x->Lca的路径第二次被进过而且不会被再次经过。。。

Lca->y的路径被第一次经过。。。最后我们再从dfs序最大的叶子结点回到根节点,保证其路径被经过了两遍。。。

然后我们就只需要用set来维护dfs序相邻两点的距离即可。。。

// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#define int long long
using namespace std;
typedef long long ll;
const int N=300050;
int head[N],to[N],nxt[N],w[N],cnt,n,m,bj[N];
int deep[N],size[N],top[N],dfn[N],id[N],son[N],fa[N],tt;
ll dis[N],ans;
set<ll> s;
set<ll>::iterator it,pre,nex;
void lnk(int x,int y,int z){
to[++cnt]=y,nxt[cnt]=head[x],w[cnt]=z,head[x]=cnt;
to[++cnt]=x,nxt[cnt]=head[y],w[cnt]=z,head[y]=cnt;
}
void dfs1(int x,int f){
size[x]=1;deep[x]=deep[f]+1;
for(int i=head[x];i;i=nxt[i]){
int y=to[i];if(y==f) continue;
dis[y]=dis[x]+w[i];dfs1(y,x);
size[y]+=size[x];fa[y]=x;
if(size[y]>size[son[x]]) son[x]=y;
}
}
void dfs2(int x,int f){
top[x]=f;dfn[x]=++tt;id[tt]=x;
if(son[x]) dfs2(son[x],f);
for(int i=head[x];i;i=nxt[i]){
int y=to[i];if(y==fa[x]||y==son[x]) continue;
dfs2(y,y);
}
}
int lca(int x,int y){
while(top[x]!=top[y]){
if(deep[top[x]]<deep[top[y]]) swap(x,y);
x=fa[top[x]];
}
if(deep[x]<deep[y]) swap(x,y);
return y;
}
ll calc(int x,int y){return dis[x]+dis[y]-2*dis[lca(x,y)];}
void add(int x){
s.insert(dfn[x]);it=s.find(dfn[x]);
if(it!=s.begin()){pre=it;pre--;}
else {pre=s.end();pre--;}
if((++it)!=s.end()){nex=it;it--;}
else {nex=s.begin();}
ans+=(calc(x,id[*pre])+calc(x,id[*nex])-calc(id[*pre],id[*nex]));
}
void del(int x){
it=s.find(dfn[x]);
if(it!=s.begin()){pre=it;pre--;}
else {pre=s.end();pre--;}
if((++it)!=s.end()){nex=it;it--;}
else {nex=s.begin();}
ans-=(calc(x,id[*pre])+calc(x,id[*nex])-calc(id[*pre],id[*nex]));
s.erase(dfn[x]);
}
main(){
scanf("%lld%lld",&n,&m);
for(int i=1;i<n;i++){
int x,y,z;scanf("%lld%lld%lld",&x,&y,&z);
lnk(x,y,z);
}
dfs1(1,0);dfs2(1,1);
for(int i=1;i<=m;i++){
int x;scanf("%d",&x);bj[x]^=1;
if(bj[x]) add(x);else del(x);
printf("%lld\n",ans);
}
return 0;
}

bzoj 3991: [SDOI2015]寻宝游戏的更多相关文章

  1. bzoj 3991: [SDOI2015]寻宝游戏 虚树 set

    目录 题目链接 题解 代码 题目链接 bzoj 3991: [SDOI2015]寻宝游戏 题解 发现每次答案就是把虚树上的路径*2 接在同一关键点上的点的dfs序是相邻的 那么用set动态维护dfs序 ...

  2. 树形结构的维护:BZOJ 3991: [SDOI2015]寻宝游戏

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  3. BZOJ 3991: [SDOI2015]寻宝游戏 树链的并+set

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  4. [BZOJ 3991][SDOI2015]寻宝游戏(dfs序)

    题面 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路 ...

  5. BZOJ 3991: [SDOI2015]寻宝游戏 [虚树 树链的并 set]

    传送门 题意: $n$个点的树,$m$次变动使得某个点有宝物或没宝物,询问每次变动后集齐所有宝物并返回原点的最小距离 转化成有根树,求树链的并... 两两树链求并就可以,但我们按照$dfs$序来两两求 ...

  6. BZOJ.3991.[SDOI2015]寻宝游戏(思路 set)

    题目链接 从哪个点出发最短路径都是一样的(最后都要回来). 脑补一下,最短路应该是按照DFS的顺序,依次访问.回溯遍历所有点,然后再回到起点. 即按DFS序排序后,Ans=dis(p1,p2)+dis ...

  7. 3991: [SDOI2015]寻宝游戏

    3991: [SDOI2015]寻宝游戏 https://www.lydsy.com/JudgeOnline/problem.php?id=3991 分析: 虚树+set. 要求树上许多点之间的路径的 ...

  8. 【BZOJ】3991: [SDOI2015]寻宝游戏

    题意 给一个\(n\)个点带边权的树.有\(m\)次操作,每一次操作一个点\(x\),如果\(x\)已经出现,则\(x\)消失.否则\(x\)出现.每一操作后,询问从某个点开始走,直到经过所有出现的点 ...

  9. 【BZOJ】3991: [SDOI2015]寻宝游戏 虚树+DFS序+set

    [题意]给定n个点的带边权树,对于树上存在的若干特殊点,要求任选一个点开始将所有特殊点走遍后返回.现在初始没有特殊点,m次操作每次增加或减少一个特殊点,求每次操作后的总代价.n,m<=10^5. ...

随机推荐

  1. Oracle存储过程和自定义函数

    新博客文章链接,欢迎大家评论探讨 概述 存储过程和存储函数是指存储在数据库中供所有用户程序调用的子程序叫存储过程.存储函数. 异同点: 存储过程和存储函数的相同点:完成特定功能的程序. 存储过程和存储 ...

  2. cinder块存储 后端采用lvm、nfs安装配置

    #cinder块存储 后端采用lvm.nfs安装配置 openstack pike 安装 目录汇总 http://www.cnblogs.com/elvi/p/7613861.html #cinder ...

  3. 第四届河南省ACM 表达式求值 栈

    表达式求值 时间限制: 1 Sec  内存限制: 128 MB 提交: 14  解决: 7 [提交][状态][讨论版] 题目描述 Dr.Kong设计的机器人卡多掌握了加减法运算以后,最近又学会了一些简 ...

  4. OGNL简介

    OGNL 一:OGNL简介 OGNL的全称是Object  Graph  Navigation  Language即对象导航语音.它是一个开源项目,工作在视图层,用来取代页面中的java脚本.简化数据 ...

  5. Hibernate学习(三)自动建表

    一般情况下有如下两种方法: 1.在配置文件中添加如下配置 <property name="hibernate.hbm2ddl.auto">create</prop ...

  6. 关于C语言中static保留字的使用

             static存储类型可以用于全部变量,无需考虑变量声明的位置.但是作用于块外部和块内部时具有不同的作用.         (1)当作用于函数内部时,和每次程序离开所在块就会丢失值的自 ...

  7. 电脑创建WIFI/无线热点之后, 手机QQ能上浏览器不能上网

    这个完全是个人经验,绝对原创,请尊重博主原创权,转载请注明转于此博客. 问题如题,大家电脑创建无线热点之后, 有的人手机会出现QQ,微信能上网, 但是浏览器或者基于浏览器的那些比如应用商店不能上网, ...

  8. java.sql.SQLException: Can not issue data manipulation statements with executeQuery().

    1.错误描写叙述 java.sql.SQLException: Can not issue data manipulation statements with executeQuery(). at c ...

  9. lufylegend练习(1)帧速率

    近期发现一个HTML开源游戏引擎,感觉还不错http://lufylegend.com/ 可是没有基础的同学.看起来费劲.所以打算边学边记笔记,说明都在凝视中 <!DOCTYPE html> ...

  10. iOS 力学动画生成器UIKit Dynamics 之碰撞效果解说

    UIKit Dynamic是iOS7 新增的一组类和方法.可赋予UIView逼真的行为和特征,不须要写动画效果那些繁琐的代码,让开发者可以轻松地改善应用的用户体验.一共同拥有6个可用于定制UIDyna ...