[HAOI 2011]向量
Description
给你一对数 \(a,b\) ,你可以任意使用 \((a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)\) 这些向量,问你能不能拼出另一个向量 \((x,y)\) 。
多组数据,数据组数 \(t\) , \(1\leq t\leq 50000\)
Solution
容易发现这题就只有以下几种操作:
- 给 \(x\pm p\cdot 2a\pm q\cdot 2b\) ,其中 \(p,q\in\mathbb{Z}\) ;
- 给 \(y\pm p\cdot 2a\pm q\cdot 2b\) ,其中 \(p,q\in\mathbb{Z}\) ;
- 给 \((x,y)+p\cdot(a,b)+q\cdot(b,a)\) ,其中 \(p,q\in\{0,1\}\)
用扩展欧几里得的那套理论乱搞就好了。
我还是太菜了啊,一开始写了个大讨论,发现不好写,看了学弟的博客才会...被学弟爆踩。
Code
//It is made by Awson on 2018.2.7
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
void read(LL &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }
LL a, b, x, y, t, g;
LL gcd(LL a, LL b) {return b ? gcd(b, a%b) : a; }
bool check(LL a, LL b) {return a%g == 0 && b%g == 0; }
void work() {
read(t);
while (t--) {
read(a), read(b), read(x), read(y);
g = gcd(a*2, b*2);
if (check(x, y) || check(x+a, y+b) || check(x+b, y+a) || check(x+a+b, y+a+b)) puts("Y");
else puts("N");
}
}
int main() {
work(); return 0;
}
[HAOI 2011]向量的更多相关文章
- [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)
[BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...
- [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...
- 【BZOJ 2301】【HAOI 2011】Problem b
今天才知道莫比乌斯反演还可以这样:$$F(n)=\sum_{n|d}f(d) \Rightarrow f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$$我好弱,,,对于$$F( ...
- 数学(莫比乌斯反演):HAOI 2011 问题B
题目描述: 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入格式: 第一行一个整数n,接下来n ...
- [HAOI 2011]Problem b
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- [HAOI 2011]Problem c
Description 给n个人安排座位,先给每个人一个1~n的编号,设第i个人的编号为ai(不同人的编号可以相同),接着从第一个人开始,大家依次入座,第i个人来了以后尝试坐到ai,如果ai被占据了, ...
- [HAOI 2011] Problem A
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2298 [算法] 考虑用总人数 - 最多人说真话 显然 , 对于每个人 , 如果他说的 ...
- Mobius 反演
上次看莫比乌斯繁衍反演是一个月前,讲道理没怎么看懂.. 然后出去跪了二十天, 然后今天又开始看发现其实并不难理解 开个这个仅记录一下写过的题. HAOI 2011 B 这应该是莫比乌斯反演的模 ...
- Deep Learning In NLP 神经网络与词向量
0. 词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representati ...
随机推荐
- 福州大学W班-Beta冲刺评分
作业链接 https://edu.cnblogs.com/campus/fzu/FZUSoftwareEngineering1715W/homework/1428 作业要求 1.博客具体要求 昨天的困 ...
- alpha-咸鱼冲刺day7(后续一波)-紫仪
总汇链接 一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 正在写登陆+注册ing 注册搞出来了!!!!!!!!QAQ(喜极而泣!!!!.jpg) 四,问题困难 数据流程大概是搞 ...
- 2017-2018-1 20155214&20155216 实验四:外设驱动程序设计
2017-2018-1 20155214&20155216 实验四:外设驱动程序设计 实验四外设驱动程序设计-1 实验要求: 学习资源中全课中的"hqyj.嵌入式Linux应用程序开 ...
- C语言最后一次博客作业
1.当初你是如何做出选择计算机专业的决定的? 一开始选专业的时候,说实话我很纠结也很迷茫,对我来说,中学时代,似乎就只要考好试,做好题就可以了,对于未来想要做啥并没有那么多的规划和想法,偶尔跟基友畅聊 ...
- 设计模式NO.2
设计模式NO.2 本次博客内容为第二次设计模式的练习.根据老师的要求完成下列题目: 题目1 如果需要开发一个跨平台视频播放器,可以在不同操作系统平台(如Windows.Linux.UNIX等)上播放多 ...
- verilog学习笔记(3)_task/case小例子及其tb
module ex_case `timescale lns/1ns module ex_case( input wire rst_n, input wire sclk, output reg [7:0 ...
- python3爬虫之入门和正则表达式
前面的python3入门系列基本上也对python入了门,从这章起就开始介绍下python的爬虫教程,拿出来给大家分享:爬虫说的简单,就是去抓取网路的数据进行分析处理:这章主要入门,了解几个爬虫的小测 ...
- JAVA_SE基础——8.基本数据类型
基本数据类型有:整数类型.浮点类型.字符类型.布尔类型 整数类型 整数类型用来存储整数数值,即没有小数部分的数值.与C.C++语言相同,整数在Java语言中有3种表示形式:十进制.八进制和十六进制. ...
- IIS 配置 FTP 网站
在 服务器管理器 的 Web服务器IIS 上安装 FTP 服务 在 IIS管理器 添加FTP网站 配置防火墙规则 说明:服务器环境是Windows Server 2008 R2,IIS7.5. 1. ...
- 裸辞两个月,海投一个月,从Android转战Web前端的求职之路
前言 看到这个标题的童鞋,可能会产生两种想法: 想法一:这篇文章是标题党 想法二:Android开发越来越不景气了吗?前端越来越火了吗? 我一向不喜欢标题党,标题中的内容是我的亲身经历.我是2016年 ...