今天作了一个paper reading,感觉论文不错,马克一下~

CVPR 2016 Best Paper Honorable Mention "Sublabel-Accurate Relaxation of Nonconvex Energies"



研究视觉问题的同学都知道,视觉问题很多都是多标签的问题,在进行优化的时候,我们都可以把他们转化为能量函数的形式,由数据项和平滑项组成。这些能量函数可以用变分的形式进行表达,当能量函数的项是非凸的话,一般使用梯度下降迭代的方法进行近似求解,有可能只能得到局部极小值。为了求解到全局最优值,我们致力于将非凸问题转化为凸问题,然后进行优化求解。

本篇论文基于泛函提升的方法提出空间连续的凸松弛框架,即将非凸问题转化为凸问题,是一种解决亚标签精度的多标签问题的方法。相比以前泛函提升的方法,该论文的方法能够使用较少的标签推断出不错的结果。这是因为以前方法标签之间是线性的,为了得到一个较好的结果,需要有很多的标签,而该论文的方法标签之间是凸近似的,可以是线性的,也可以是二次的。此外,该论文提出的将非凸问题转化为凸问题的方法,在数学上是最紧的凸松弛,有严格的数学推导。

该论文的整体思路是什么样的呢?现在我们有能量函数的变分表达式,分别对两项求取凸包络,怎么求呢?作者使用两次共轭的方法进行求解,在论文的第三部分有数学推导,这种方法是将非凸问题转化为凸问题最紧的方法。然后对转化后的数学表达式进行优化求解,可以把这个表达式转化为一个鞍点形式,进而使用原对偶的方法进行求解。x相比传统方法,该论文的优势是使用较少的标签,能够推断出空间平滑的结果,减少标签的数量,以视差图为例,如下:

为什么其标签少,还能得到不错的效果呢?请看下图

本篇论文的求解方法,作者公布了代码,他们还在ECCV2016发表了类似的文章,如下:

Code:https://github.com/tum-vision/sublabel_relax

Sublabel-AccurateRelaxation of Nonconvex Energies (T. Möllenhoff,E. Laude, M. Moeller, J. Lellmann, D. Cremers),In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Sublabel-AccurateConvex Relaxation of Vectorial MultilabelEnergies (E. Laude, T. Möllenhoff, M. Moeller, J. Lellmann,D. Cremers),In European Conference on Computer Vision and Pattern Recognition (ECCV), 2016.

浅析"Sublabel-Accurate Relaxation of Nonconvex Energies" CVPR 2016 Best Paper Honorable Mention的更多相关文章

  1. 深度视觉盛宴——CVPR 2016

    小编按: 计算机视觉和模式识别领域顶级会议CVPR 2016于六月末在拉斯维加斯举行.微软亚洲研究院在此次大会上共有多达15篇论文入选,这背后也少不了微软亚洲研究院的实习生的贡献.大会结束之后,小编第 ...

  2. (转)CVPR 2016 Visual Tracking Paper Review

    CVPR 2016 Visual Tracking Paper Review  本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...

  3. CVPR 2016 paper reading (3)

    DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations, Ziwei Liu, Pin ...

  4. CVPR 2016 paper reading (2)

    1. Sketch me that shoe, Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales, Cheng Chan ...

  5. CVPR 2016 paper reading (6)

    1. Neuroaesthetics in fashion: modeling the perception of fashionability, Edgar Simo-Serra, Sanja Fi ...

  6. [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  7. 论文阅读笔记二十七:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(CVPR 2016)

    论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对 ...

  8. Single Image Haze Removal(图像去雾)-CVPR’09 Best Paper

    公式推导 paper闪光点 找到了一个很简洁的假设. paper不足 代码跑起来很慢.据说2010年的ECCV那篇是改进的.

  9. 目标检测网络之 YOLOv2

    YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体. 每个格子预测B个bounding b ...

随机推荐

  1. windows下 在cmd中输入ls命令出现“ls不是内部或外部命令“解决方法

    1.新建一个文件命名为 ls.bat 2.打开编辑这个文件 输入: @echo off dir 3.将这个文件放在C:\windows目录下

  2. 涨薪必备Javascript,快点放进小口袋!

    摘要: 嗨,新一年的招聘季,你找到更好的工作了吗?小姐姐最近刚换的工作,来总结下面试必备小技能,从this来看看javascript,让我们更深入的了解它. 前言 在JavaScript中,被吐槽最多 ...

  3. [LeetCode] Valid Parenthesis String 验证括号字符串

    Given a string containing only three types of characters: '(', ')' and '*', write a function to chec ...

  4. codeforces 888G Xor-MST

    You are given a complete undirected graph with n vertices. A number ai is assigned to each vertex, a ...

  5. [SDOI2016]硬币游戏

    题目描述 Alice 和 Bob 现在在玩的游戏,主角是依次编号为 1 到 n 的 n 枚硬币.每一枚硬币都有两面,我们分别称之为正面和反面.一开始的时候,有些硬币是正面向上的,有些是反面朝上的.Al ...

  6. ESLint规范

    配置如下:{ // 环境定义了预定义的全局变量. "env": { //环境定义了预定义的全局变量.更多在官网查看 "browser":true, " ...

  7. C语言程序设计预备作业。

    1. 阅读邹欣老师的博客--师生关系,针对文中的几种师生关系谈谈你的看法,你期望的师生关系是什么样的? 答:我理想中的师生关系是Coach/Trainee(健身教练/健身学员)的关系.因为邹老师就如同 ...

  8. C语言程序设计第四次作业——选择结构(二)

    (一)改错题 错误信息: 错误原因:第13行sqrt数学函数缺少")",导致编译器无法将括号正确配对 改正方法:补齐缺少的")" 错误信息: 错误原因:if语句 ...

  9. Fashion-MNIST:A MNIST-like fashion product database. Benchmark

    Zalando的文章图像的一个数据集包括一个训练集6万个例子和一个10,000个例子的测试集. 每个示例是一个28x28灰度图像,与10个类别的标签相关联. 时尚MNIST旨在作为用于基准机器学习算法 ...

  10. linux设置oracle自动启动

    用root用户 在/etc/init.d/目录下创建Oracle的服务文件 cd /etc/init.d vi oracle11g   添加内容如下   #!/bin/bash # chkconfig ...