二分图博弈果然都是一个套路,必经点必胜,非必经点必败,

但是肯定不能每走一步就重新建图判断必胜还是必败,那么我们可以这样:每走一步就把这个点删掉,然后find他原来的匹配,如果找不到,就说明他是必经点,否则就是非必经点。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#define N 1601
using namespace std;
int e=,head[N];
struct edge{int v,next;}ed[N*];
void add(int u,int v){ed[e].v=v;ed[e].next=head[u];head[u]=e++;}
int pp[N],del[N],id[][];
bool vis[N],ans[N];
bool find(int x){
for(int i=head[x];i;i=ed[i].next){
int v=ed[i].v;
if(del[v]||vis[v])continue;vis[v]=;
if(!pp[v]||find(pp[v])){
pp[v]=x;pp[x]=v;
return ;
}
}return ;
}
int a[][],be,n,m,T,sx,sy,tot1,tot2,tot;
char ch[];
bool check(int i,int j){return ((i+j)&)^a[i][j]==be;}
int f[N],f_cnt;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%s",ch+);
for(int j=;j<=m;j++)
if(ch[j]=='O')a[i][j]=;
else if(ch[j]=='X')a[i][j]=;
else sx=i,sy=j;
}
be=(sx+sy)&;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)if(check(i,j))
if(a[i][j])id[i][j]=++tot1;
else id[i][j]=++tot2;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)if(check(i,j)&&(!a[i][j]))
id[i][j]+=tot1;
tot=tot1+tot2;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)if(id[i][j]){
if(id[i+][j])add(id[i][j],id[i+][j]);
if(id[i][j+])add(id[i][j],id[i][j+]);
if(id[i-][j])add(id[i][j],id[i-][j]);
if(id[i][j-])add(id[i][j],id[i][j-]);
}
for(int i=;i<=tot1;i++){
memset(vis,,sizeof vis);
find(i);
}
scanf("%d",&T);T<<=;
for(int i=,x,y;i<=T;i++){
int now=id[sx][sy],p=pp[now];
del[now]=;pp[now]=pp[p]=;
if(!p)ans[i]=;
else{
memset(vis,,sizeof vis);
ans[i]=find(p)^;
}
scanf("%d%d",&sx,&sy);
}
for(int i=;i<=T;i+=)
if(ans[i]&&ans[i+])f[++f_cnt]=(i+)>>;
printf("%d\n",f_cnt);
for(int i=;i<=f_cnt;i++)
printf("%d\n",f[i]);
return ;
}

bzoj2437 [Noi2011]兔兔与蛋蛋的更多相关文章

  1. 【BZOJ2437】【NOI2011】兔兔与蛋蛋(博弈论,二分图匹配)

    [BZOJ2437][NOI2011]兔兔与蛋蛋(博弈论,二分图匹配) 题面 BZOJ 题解 考虑一下暴力吧. 对于每个状态,无非就是要考虑它是否是必胜状态 这个直接用\(dfs\)爆搜即可. 这样子 ...

  2. 【bzoj2437】[Noi2011]兔兔与蛋蛋 二分图最大匹配+博弈论

    Description Input 输入的第一行包含两个正整数 n.m. 接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母&quo ...

  3. 【BZOJ 2437】 2437: [Noi2011]兔兔与蛋蛋 (博弈+二分图匹配**)

    未经博主同意不得转载 2437: [Noi2011]兔兔与蛋蛋 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 442 Des ...

  4. bzoj 2437[Noi2011]兔兔与蛋蛋 黑白染色二分图+博弈+匈牙利新姿势

    noi2011 兔兔与蛋蛋 题目大意 直接看原题吧 就是\(n*m\)的格子上有一些白棋和一些黑棋和唯一一个空格 兔兔先手,蛋蛋后手 兔兔要把与空格相邻的其中一个白棋移到空格里 蛋蛋要把与空格相邻的其 ...

  5. 2437: [Noi2011]兔兔与蛋蛋 - BZOJ

    Description Input 输入的第一行包含两个正整数 n.m.接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母" ...

  6. NOI2011 兔兔与蛋蛋游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=2437 这道题真是极好的. 75分做法: 搜索. 出题人真的挺良心的,前15个数据点的范围都很小,可以 ...

  7. 博弈论(二分图匹配):NOI 2011 兔兔与蛋蛋游戏

    Description Input 输入的第一行包含两个正整数 n.m. 接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母&quo ...

  8. 【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)

    [BZOJ2432][NOI2011]兔农(数论,矩阵快速幂) 题面 BZOJ 题解 这题\(75\)分就是送的,我什么都不想写. 先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后 把它减 ...

  9. BZOJ2437 [Noi2011]兔兔与蛋蛋 【博弈论 + 二分图匹配】

    题目链接 BZOJ2437 题解 和JSOI2014很像 只不过这题动态删点 如果我们把空位置看做\(X\)的话,就会发现我们走的路径是一个\(OX\)交错的路径 然后将图二分染色,当前点必胜,当且仅 ...

  10. BZOJ2437 NOI2011兔兔与蛋蛋(二分图匹配+博弈)

    首先将棋盘黑白染色,不妨令空格处为黑色.那么移动奇数次后空格一定处于白色格子,偶数次后空格一定处于黑色格子.所以若有某个格子的棋子颜色与棋盘颜色不同,这个棋子就是没有用的.并且空格与某棋子交换后,棋子 ...

随机推荐

  1. iOS 字体权重weight

    UIFontWeightUltraLight  - 超细字体 UIFontWeightThin  - 纤细字体 UIFontWeightLight  - 亮字体 UIFontWeightRegular ...

  2. Python 3 中的json模块使用

    1. 概述 JSON (JavaScript Object Notation)是一种使用广泛的轻量数据格式. Python标准库中的json模块提供了JSON数据的处理功能. Python中一种非常常 ...

  3. valid palindrome(回文)

    Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignori ...

  4. IDEA: 遇到问题Error during artifact deployment. See server log for details解决方法

    1.检查tomcat是否配置正确. 2.检查配置文件是否配置正确,web.xml.等. 3. 4.

  5. Netty入门

    一.NIO Netty框架底层是对NIO的高度封装,所以想要更好的学习Netty之前,应先了解下什么是NIO - NIO是non-blocking的简称,在jdk1.4 里提供的新api,他的他的特性 ...

  6. 关于windows修改远程登录端口的问题

    windows远程桌面默认使用的是3389,为了避免被别用用心的扫描从而暴力破解远程服务器或者vps的账户信息.可以修改默认端口3389到其它端口,如8000,10000等.最好修改为10000以后的 ...

  7. Linux 下常用的Shell 命令

    英文原文链接:https://www.lopezferrando.com/30-interesting-shell-commands/ 1. 监控命令(每2秒运行一次) watch "ls ...

  8. Visual Studio 2017 15.7 下的.NET Core

    Visual Studio 2017 15.7版本发布,对.NET Core项目的主要相关改变如下, 同时对Xamarin.Android和iOS项目的支持上也做了较大改进. 一. .NET Core ...

  9. Kafka安装之 Zookeeper

    一 . Zookeeper 概述        ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它 ...

  10. ResultSet只返回一行数据的原因

    写之前,先告戒一下自己......写代码一定要细心,自己写的即使是非常简单的地方也要细心,不能自我感觉太良好,那往往可能会有些bug在等着你...... 注意事项: 1.当你为了查看数据库中是否存在某 ...