二分图博弈果然都是一个套路,必经点必胜,非必经点必败,

但是肯定不能每走一步就重新建图判断必胜还是必败,那么我们可以这样:每走一步就把这个点删掉,然后find他原来的匹配,如果找不到,就说明他是必经点,否则就是非必经点。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#define N 1601
using namespace std;
int e=,head[N];
struct edge{int v,next;}ed[N*];
void add(int u,int v){ed[e].v=v;ed[e].next=head[u];head[u]=e++;}
int pp[N],del[N],id[][];
bool vis[N],ans[N];
bool find(int x){
for(int i=head[x];i;i=ed[i].next){
int v=ed[i].v;
if(del[v]||vis[v])continue;vis[v]=;
if(!pp[v]||find(pp[v])){
pp[v]=x;pp[x]=v;
return ;
}
}return ;
}
int a[][],be,n,m,T,sx,sy,tot1,tot2,tot;
char ch[];
bool check(int i,int j){return ((i+j)&)^a[i][j]==be;}
int f[N],f_cnt;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%s",ch+);
for(int j=;j<=m;j++)
if(ch[j]=='O')a[i][j]=;
else if(ch[j]=='X')a[i][j]=;
else sx=i,sy=j;
}
be=(sx+sy)&;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)if(check(i,j))
if(a[i][j])id[i][j]=++tot1;
else id[i][j]=++tot2;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)if(check(i,j)&&(!a[i][j]))
id[i][j]+=tot1;
tot=tot1+tot2;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)if(id[i][j]){
if(id[i+][j])add(id[i][j],id[i+][j]);
if(id[i][j+])add(id[i][j],id[i][j+]);
if(id[i-][j])add(id[i][j],id[i-][j]);
if(id[i][j-])add(id[i][j],id[i][j-]);
}
for(int i=;i<=tot1;i++){
memset(vis,,sizeof vis);
find(i);
}
scanf("%d",&T);T<<=;
for(int i=,x,y;i<=T;i++){
int now=id[sx][sy],p=pp[now];
del[now]=;pp[now]=pp[p]=;
if(!p)ans[i]=;
else{
memset(vis,,sizeof vis);
ans[i]=find(p)^;
}
scanf("%d%d",&sx,&sy);
}
for(int i=;i<=T;i+=)
if(ans[i]&&ans[i+])f[++f_cnt]=(i+)>>;
printf("%d\n",f_cnt);
for(int i=;i<=f_cnt;i++)
printf("%d\n",f[i]);
return ;
}

bzoj2437 [Noi2011]兔兔与蛋蛋的更多相关文章

  1. 【BZOJ2437】【NOI2011】兔兔与蛋蛋(博弈论,二分图匹配)

    [BZOJ2437][NOI2011]兔兔与蛋蛋(博弈论,二分图匹配) 题面 BZOJ 题解 考虑一下暴力吧. 对于每个状态,无非就是要考虑它是否是必胜状态 这个直接用\(dfs\)爆搜即可. 这样子 ...

  2. 【bzoj2437】[Noi2011]兔兔与蛋蛋 二分图最大匹配+博弈论

    Description Input 输入的第一行包含两个正整数 n.m. 接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母&quo ...

  3. 【BZOJ 2437】 2437: [Noi2011]兔兔与蛋蛋 (博弈+二分图匹配**)

    未经博主同意不得转载 2437: [Noi2011]兔兔与蛋蛋 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 442 Des ...

  4. bzoj 2437[Noi2011]兔兔与蛋蛋 黑白染色二分图+博弈+匈牙利新姿势

    noi2011 兔兔与蛋蛋 题目大意 直接看原题吧 就是\(n*m\)的格子上有一些白棋和一些黑棋和唯一一个空格 兔兔先手,蛋蛋后手 兔兔要把与空格相邻的其中一个白棋移到空格里 蛋蛋要把与空格相邻的其 ...

  5. 2437: [Noi2011]兔兔与蛋蛋 - BZOJ

    Description Input 输入的第一行包含两个正整数 n.m.接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母" ...

  6. NOI2011 兔兔与蛋蛋游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=2437 这道题真是极好的. 75分做法: 搜索. 出题人真的挺良心的,前15个数据点的范围都很小,可以 ...

  7. 博弈论(二分图匹配):NOI 2011 兔兔与蛋蛋游戏

    Description Input 输入的第一行包含两个正整数 n.m. 接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母&quo ...

  8. 【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)

    [BZOJ2432][NOI2011]兔农(数论,矩阵快速幂) 题面 BZOJ 题解 这题\(75\)分就是送的,我什么都不想写. 先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后 把它减 ...

  9. BZOJ2437 [Noi2011]兔兔与蛋蛋 【博弈论 + 二分图匹配】

    题目链接 BZOJ2437 题解 和JSOI2014很像 只不过这题动态删点 如果我们把空位置看做\(X\)的话,就会发现我们走的路径是一个\(OX\)交错的路径 然后将图二分染色,当前点必胜,当且仅 ...

  10. BZOJ2437 NOI2011兔兔与蛋蛋(二分图匹配+博弈)

    首先将棋盘黑白染色,不妨令空格处为黑色.那么移动奇数次后空格一定处于白色格子,偶数次后空格一定处于黑色格子.所以若有某个格子的棋子颜色与棋盘颜色不同,这个棋子就是没有用的.并且空格与某棋子交换后,棋子 ...

随机推荐

  1. pyqt5 动画在QThread线程中无法运行问题

    自己做了一个tcp工具,在学习动画的时候踩了坑,需求是根据上线变绿色,离线变灰色,如果连接断开了,则变为灰色 问题现象: 可以看到点击"连接","离线"的时候动 ...

  2. Java 学习资料整理

    Java 学习资料整理 Java 精品学习视频教程下载汇总 Java视频教程 孙鑫Java无难事 (全12CD) Java视频教程 即学即会java 上海交大 Java初级编程基础 共25讲下载 av ...

  3. 企业级web负载均衡完美架构

    转载:揭秘企业级web负载均衡完美架构(图) 2010-07-06 15:16 抚琴煮酒 51CTO.com 字号:T | T 相信很多朋友对企业级的负载均衡高可用实例非常感兴趣,此篇文章根据成熟的线 ...

  4. PHP内核之旅-2.SAPI中的Cli

    PHP 内核之旅系列 PHP内核之旅-1.生命周期 PHP内核之旅-2.SAPI中的Cli 一.SAPI是什么? 1.1 理解SAPI (1)SAPI是PHP框架的接口层.有很多种服务器的SAPI的实 ...

  5. jQuery匿名函数$(function(){ }

    搬运原地址:https://zhidao.baidu.com/question/473318430.html $(function(){ }实际上是匿名函数.这是JQuery的语法,$表示JQuery ...

  6. Python中Json对象处理的jsonpath-rw

    这两天在写一个爬虫,需要从网站返回的json数据提取一些有用的数据. 向url发起请求,返回的是response,在python3中,response.content是二进制bytes类型的,需要用d ...

  7. ElasticSearch本地调测环境构建

    ElasicSearch版本:6.0.0:https://github.com/elastic/elasticsearch.git 1:安装JVM(JVM1.8以上) 2:安装gradle(3.3以上 ...

  8. Myeclipse+selenium2.0+Junit+TestNg环境搭建

    这周末把自动化的环境搭好了,在网上也百度了很多,现在分享下,希望大家少走一点歪路. 需要用到的安装包都在这个里面,自取: 链接:https://pan.baidu.com/s/10ohf757ztgN ...

  9. 一文读懂 Spring Boot、微服务架构和大数据治理三者之间的故事

    微服务架构 微服务的诞生并非偶然,它是在互联网高速发展,技术日新月异的变化以及传统架构无法适应快速变化等多重因素的推动下诞生的产物.互联网时代的产品通常有两类特点:需求变化快和用户群体庞大,在这种情况 ...

  10. 小程序从后台输出的代码为HTML实体字符如何解决?

    最近在做一个小程序的考试系统,从后台调出的数据是这个样子的 那么我遇到这个问题的时候想到的微信小程序的富文本即(wxParse),使用过wxParse的都知道,富文本必须得具体到单个的数据上才能使用, ...