Description

圣诞节到了,FireDancer准备做一棵大圣诞树。下图为圣诞树的一个简单结构。

这棵树被表示成一组被编号的结点和一些边的集合。结点从1到n编号。树的根永远是1。每个结点都有一个自身特有的数值,称为它的重。各个结点的重可能不同。对于一棵做完的树来说,每条边都有一个价值,若设这条边e连接结点i和结点j,且i为j的父结点(根是最老的祖先),则该边的价值为(j的所有子孙及它自己的重之和)*(e的单位价值ce)。

现在FireDancer想造一棵树,使得树上所有边的总价值最小,并且所有的点都在树上,因为FireDancer喜欢大树。

Input

第一行两个整数n和m(0<=n,m<=50000),表示结点总数和可供选择的边数。

下面一行有n个整数,依次表示每个结点的重。

下面m行,每行有3个正整数a,b,c,表示结点a和结点b之间有一个单位价值为c的边可供你造树时选择。

输入中的所有数都小于2^16。

Output

若无解,输出“No Answer”,否则一个整数表示造树的最小价值。

Sample Input

[样例输入1]

2 1

1 1

1 2 15

[样例输入2]

7 7

200 10 20 30 40 50 60

1 2 1

2 3 3

2 4 2

3 5 4

3 7 2

3 6 3

1 5 9

Sample Output

[样例输出1]

15

[样例输出2]

1210

题解

观察发现得到的最大圣诞树所有边的价值总和最小恰好等于根节点到其余各节点的最短路径乘以每个节点的重之和。最后边的价值总和中对于圣诞树中某个节点它的重会乘以什么东西呢?很显然恰好乘的是根节点到该节点的最短路径。因此就是求出每个节点到根节点的最短距离,问题迎刃而解。

#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int maxsize=50000;
const long long inf=2147483647;
const int maxE=100;
class edge
{
public:
int k;
short int e[maxE];
short int w[maxE];
edge()
{
k=0;
}
};
int n,m;
short int node[maxsize]={0};
bool ok[maxsize]={0};
int dist[maxsize]={0};
edge E[25000];
long long sum;
int main()
{
int i,j,k;
int x,y;
int Node;
//input
cin>>n>>m;
for (i=1;i<=n;i++)
cin>>node[i];
for (i=1;i<=m;i++)
{
cin>>x>>y;
E[x].k++;
E[x].e[E[x].k]=y;
cin>>E[x].w[E[x].k];
E[y].k++;
E[y].e[E[y].k]=x;
E[y].w[E[y].k]=E[x].w[E[x].k];
}//用结构体储存内容
for (i=1;i<=n;i++)
dist[i]=inf;//dis值赋初值
dist[1]=0;
for (i=1;i<=n;i++)
{
k=inf;
for (j=1;j<=n;j++)
{
if ((dist[j]<k)&&(ok[j]==0))
{
k=dist[j];
Node=j;
}
}
ok[Node]=1;
for (j=1;j<=E[Node].k;j++)
if (ok[E[Node].e[j]]==0)
{
x=E[Node].e[j];
if (dist[Node]+E[Node].w[j]<dist[x])
{
dist[x]=dist[Node]+E[Node].w[j];
}
}
}//迪杰斯特拉算法
sum=0;
for (i=1;i<=n;i++)
sum=sum+dist[i]*node[i];
cout<<sum<<endl;//计算和输出
return 0;
}//借鉴萝卜代码,自己的找不到了。感谢萝卜songyuchen0001

【CJOJ P2226】[省常中2011S4] 圣诞节的更多相关文章

  1. cogs 1075. [省常中2011S4] 最短路径问题

    1075. [省常中2011S4] 最短路径问题 ★   输入文件:short.in   输出文件:short.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 平面上 ...

  2. 省常中模拟 day2

    第一题: 题目大意: 有mn颗糖,要装进k个盒子里,使得既可以平均分给n个人,也可以平均分给m个人. 求k的最小值. 解题过程: 1.先看一组小数据(13,21).那么根据贪心的原则很容易想到先拿13 ...

  3. 省常中模拟 day1

    第一题: 题目大意: 给出N个数的数列,如果相邻的两个数加起来是偶数,那么就可以把这两个数消掉,求最多能消掉多少数. 解题过程: 1.先自己手工模拟了几组数据,发现不管消除的顺序如何,最终剩下的是一定 ...

  4. 省常中模拟 Test2 Day2

    two 模拟 大意:给你一个 N 位二进制数,有四种操作:加1.减1.乘2.整除2.给定一个操作序列,求最终结果.N <= 5*10^6.数据保证不会在最高位上进行进位或退位操作. 初步解法:由 ...

  5. 省常中模拟 Test4

    prime 数论 题意:分别求 1*n.2*n.3*n.... n*n 关于模 p 的逆元.p 是质数,n < p. 初步解法:暴力枚举.因为 a 关于模 p 的逆元 b 满足 ab mod p ...

  6. 省常中模拟 Test3 Day1

    tile 贪心 题意:给出一个矩形,用不同字母代表的正方形填充,要求相邻的方块字母不能相同,求字典序(将所有行拼接起来)最小的方案. 初步解法:一开始没怎么想,以为策略是每次填充一个尽量大的正方形.但 ...

  7. 省常中模拟 Test1 Day1

    临洮巨人 排序 题意:在字符串中找出 A.B.C 三个字母出现次数相同的区间个数. 初步的解法是前缀和,用 a(i), b(i), c(i) 表示在位置 i 之前(包括 i)各有 字母 A.B.C 多 ...

  8. HGOI 20190816 省常中互测8

    Problem A  有两条以(0,0)为端点,分别经过(a,b),(c,d)的射线,你要求出夹在两条射线中间,且距离(0,0)最近的点(x,y) 对于$100\%$的数据满足$1 \leq T \l ...

  9. HGOI20190814 省常中互测7

    Problem A 中间值 对于$2$个非严格单增序列$\{A_n\} , \{B_n\}$,维护下列两个操作: 1 x y z: (x=0)时将$A_y = z$ , (x=1)时将$B_y = z ...

随机推荐

  1. css的浮动与定位

    显示与隐藏 标签 属性 值 效果 区别 css的style display none 元素不可见 不占页面空间 css的style visibility hidden 元素不可见 占页面空间 disp ...

  2. 利用UICollectionView实现列表和宫格视图的切换

    很多时候我们需要列表和宫格视图的来回切换,就像苹果的天气应用一样,我之前见过一个用tableview和collectionview来实现这种效果的,我本人不太喜欢这个,那么有没有更好的方法呢?答案是: ...

  3. 用tig来查看git log

    sudo apt-get install tig安装软件 在项目目录下:tig查看git 的 log 常用指令:上下箭头选择log的版本enter进入具体版本查看详细k和j是上下滚动查看详细信息的内容 ...

  4. egametang网络系统组件

    先看一下网络组件的中层: AService抽象了udp和tcp协议的连接工厂,udp的连接方式也被封装的和tcp类似,但是一个接收连接的UService只能建立一个连接.这个接口既可以做服务端通过Ac ...

  5. elasticsearch2.3.3安装

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 摘要: 作者原来搭建的环境是0.95版本 现在升级到2.3.3版本, ...

  6. ThreadLoacl,InheritableThreadLocal,原理,以及配合线程池使用的一些坑

    虽然使用AOP可以获取方法签名,但是如果要获取方法中计算得出的数据,那么就得使用ThreadLocal,如果还涉及父线程,那么可以选择InheritableThreadLocal. 注意:理解一些原理 ...

  7. 高并发场景下的httpClient优化使用

    1.背景 我们有个业务,会调用其他部门提供的一个基于http的服务,日调用量在千万级别.使用了httpclient来完成业务.之前因为qps上不去,就看了一下业务代码,并做了一些优化,记录在这里. 先 ...

  8. java日期转化

    package com.kang.util; import java.text.ParseException; import java.text.SimpleDateFormat; import ja ...

  9. iOS开发之emoji处理

    看似emoji处理应该和我们iOS开发有着很大的关系,实则不然,对于emoji的处理只要在服务器端做就可以了,我所说的处理是我们将表情提交到服务器,那么在服务器端需要做些什么处理呢? 服务器如果直接存 ...

  10. iOS学习 NSString常用技巧

    字符串是程序设计最常用的数据类型之一了.在Mac/iPhone编程中,苹果为我们提供了一个不同的字符串类型NSString.有别与普通的String为数据类型,NSString其实是一个对象类型.NS ...