Description

圣诞节到了,FireDancer准备做一棵大圣诞树。下图为圣诞树的一个简单结构。

这棵树被表示成一组被编号的结点和一些边的集合。结点从1到n编号。树的根永远是1。每个结点都有一个自身特有的数值,称为它的重。各个结点的重可能不同。对于一棵做完的树来说,每条边都有一个价值,若设这条边e连接结点i和结点j,且i为j的父结点(根是最老的祖先),则该边的价值为(j的所有子孙及它自己的重之和)*(e的单位价值ce)。

现在FireDancer想造一棵树,使得树上所有边的总价值最小,并且所有的点都在树上,因为FireDancer喜欢大树。

Input

第一行两个整数n和m(0<=n,m<=50000),表示结点总数和可供选择的边数。

下面一行有n个整数,依次表示每个结点的重。

下面m行,每行有3个正整数a,b,c,表示结点a和结点b之间有一个单位价值为c的边可供你造树时选择。

输入中的所有数都小于2^16。

Output

若无解,输出“No Answer”,否则一个整数表示造树的最小价值。

Sample Input

[样例输入1]

2 1

1 1

1 2 15

[样例输入2]

7 7

200 10 20 30 40 50 60

1 2 1

2 3 3

2 4 2

3 5 4

3 7 2

3 6 3

1 5 9

Sample Output

[样例输出1]

15

[样例输出2]

1210

题解

观察发现得到的最大圣诞树所有边的价值总和最小恰好等于根节点到其余各节点的最短路径乘以每个节点的重之和。最后边的价值总和中对于圣诞树中某个节点它的重会乘以什么东西呢?很显然恰好乘的是根节点到该节点的最短路径。因此就是求出每个节点到根节点的最短距离,问题迎刃而解。

#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int maxsize=50000;
const long long inf=2147483647;
const int maxE=100;
class edge
{
public:
int k;
short int e[maxE];
short int w[maxE];
edge()
{
k=0;
}
};
int n,m;
short int node[maxsize]={0};
bool ok[maxsize]={0};
int dist[maxsize]={0};
edge E[25000];
long long sum;
int main()
{
int i,j,k;
int x,y;
int Node;
//input
cin>>n>>m;
for (i=1;i<=n;i++)
cin>>node[i];
for (i=1;i<=m;i++)
{
cin>>x>>y;
E[x].k++;
E[x].e[E[x].k]=y;
cin>>E[x].w[E[x].k];
E[y].k++;
E[y].e[E[y].k]=x;
E[y].w[E[y].k]=E[x].w[E[x].k];
}//用结构体储存内容
for (i=1;i<=n;i++)
dist[i]=inf;//dis值赋初值
dist[1]=0;
for (i=1;i<=n;i++)
{
k=inf;
for (j=1;j<=n;j++)
{
if ((dist[j]<k)&&(ok[j]==0))
{
k=dist[j];
Node=j;
}
}
ok[Node]=1;
for (j=1;j<=E[Node].k;j++)
if (ok[E[Node].e[j]]==0)
{
x=E[Node].e[j];
if (dist[Node]+E[Node].w[j]<dist[x])
{
dist[x]=dist[Node]+E[Node].w[j];
}
}
}//迪杰斯特拉算法
sum=0;
for (i=1;i<=n;i++)
sum=sum+dist[i]*node[i];
cout<<sum<<endl;//计算和输出
return 0;
}//借鉴萝卜代码,自己的找不到了。感谢萝卜songyuchen0001

【CJOJ P2226】[省常中2011S4] 圣诞节的更多相关文章

  1. cogs 1075. [省常中2011S4] 最短路径问题

    1075. [省常中2011S4] 最短路径问题 ★   输入文件:short.in   输出文件:short.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 平面上 ...

  2. 省常中模拟 day2

    第一题: 题目大意: 有mn颗糖,要装进k个盒子里,使得既可以平均分给n个人,也可以平均分给m个人. 求k的最小值. 解题过程: 1.先看一组小数据(13,21).那么根据贪心的原则很容易想到先拿13 ...

  3. 省常中模拟 day1

    第一题: 题目大意: 给出N个数的数列,如果相邻的两个数加起来是偶数,那么就可以把这两个数消掉,求最多能消掉多少数. 解题过程: 1.先自己手工模拟了几组数据,发现不管消除的顺序如何,最终剩下的是一定 ...

  4. 省常中模拟 Test2 Day2

    two 模拟 大意:给你一个 N 位二进制数,有四种操作:加1.减1.乘2.整除2.给定一个操作序列,求最终结果.N <= 5*10^6.数据保证不会在最高位上进行进位或退位操作. 初步解法:由 ...

  5. 省常中模拟 Test4

    prime 数论 题意:分别求 1*n.2*n.3*n.... n*n 关于模 p 的逆元.p 是质数,n < p. 初步解法:暴力枚举.因为 a 关于模 p 的逆元 b 满足 ab mod p ...

  6. 省常中模拟 Test3 Day1

    tile 贪心 题意:给出一个矩形,用不同字母代表的正方形填充,要求相邻的方块字母不能相同,求字典序(将所有行拼接起来)最小的方案. 初步解法:一开始没怎么想,以为策略是每次填充一个尽量大的正方形.但 ...

  7. 省常中模拟 Test1 Day1

    临洮巨人 排序 题意:在字符串中找出 A.B.C 三个字母出现次数相同的区间个数. 初步的解法是前缀和,用 a(i), b(i), c(i) 表示在位置 i 之前(包括 i)各有 字母 A.B.C 多 ...

  8. HGOI 20190816 省常中互测8

    Problem A  有两条以(0,0)为端点,分别经过(a,b),(c,d)的射线,你要求出夹在两条射线中间,且距离(0,0)最近的点(x,y) 对于$100\%$的数据满足$1 \leq T \l ...

  9. HGOI20190814 省常中互测7

    Problem A 中间值 对于$2$个非严格单增序列$\{A_n\} , \{B_n\}$,维护下列两个操作: 1 x y z: (x=0)时将$A_y = z$ , (x=1)时将$B_y = z ...

随机推荐

  1. 织梦搜索页使用arclist标签

    织梦默认不能在搜索页使用arclist标签,我们对代码做一些小改动即可 打开include/arc.searchview.class.php 一.查找代码: require_once(DEDEINC. ...

  2. Java JMS 程序基础 与 ActiveMQ 安装(一)

    一 ActiveMQ安装 从Apache官网上下载 ActivieMQ的安装包 apache-activemq-5.9.1-bin.tar.gz, 并拷贝到linux的安装目录解压 # tar -zx ...

  3. Activiti中的各个service的作用

    各个Service的作用: RepositoryService 管理流程定义 RuntimeService 执行管理,包括启动.推进.删除流程实例等操作 TaskService 任务管理 Histor ...

  4. ch11 持有对象

    Java集合的基本类型:List.Set.Queue.Map 使用容器时若未指定泛型参数ArrayList apples=new ArrayList();,则容器中所有元素都为Object类型,使用时 ...

  5. hdu1061(2015-N1):1.快速幂;2.找规律

    1.快速幂 原理:求a的b次方,将b转化为二进制数,该二进制位第i位的权是2^(i-1), 例如 11的二进制是1011 11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1 因此,我们将a¹ ...

  6. 打造SpringBootTemplate(SpringBoot项目的模版)

    随着框架使用的不断的更新,后面使用SpringBoot会多,这边准备构建一个SpringBoot项目使用的模版. 所谓模版,和之前一样,就是一个最简单的项目,包含所有最简单的空实现. 做模版的时候参考 ...

  7. Fabric单节点安装备忘

    安装文档:http://www.cnblogs.com/studyzy/p/7437157.html 安装上面的文档安装成功,但是过程中遇到一些问题. 一.go的源码包可能下载不下来,因为被墙,go官 ...

  8. 在浏览器地址栏输入URL,按下回车后究竟发生了什么?

    1.DNS 在浏览器中输入URL后,首先要进行DNS解析,DNS解析的顺序为: 浏览器缓存 本地hosts文件 系统缓存 路由器缓存 DNS服务器迭代查询 2.发送请求 通过DNS得到目标的IP地址后 ...

  9. 学web前端开发有前途吗

    web前端开发现在如此火爆,可以说是引领了IT培训行业的一个潮流,那么web前端开发都要学些什么知识呢?为什么这么火有前途吗?现在行业很需要这种人才吗?还是大家盲目跟风,随大流,下面小编对web前端做 ...

  10. 关于VS2013调试IIS应用源代码时无法进入断点的问题总结

    调试无法进入断点 前言:今天再次遇到之前调试无法进入断点的问题,本来想不写呢觉得没什么只是又犯了同样的错误,但是我发现这个问题我分析起来还是挺费劲的,我仔细想了想原因, 是因为自己对之前的错误没有进行 ...