【BZOJ2241】【Sdoi2011R1D1】打地鼠
Description
打地鼠是这样的一个游戏:地面上有一些地鼠洞,地鼠们会不时从洞里探出头来很短时间后又缩回洞中。玩家的目标是在地鼠伸出头时,用锤子砸其头部,砸到的地鼠越多分数也就越高。
游戏中的锤子每次只能打一只地鼠,如果多只地鼠同时探出头,玩家只能通过多次挥舞锤子的方式打掉所有的地鼠。你认为这锤子太没用了,所以你改装了锤子,增加了锤子与地面的接触面积,使其每次可以击打一片区域。如果我们把地面看做MN的方阵,其每个元素都代表一个地鼠洞,那么锤子可以覆盖RC区域内的所有地鼠洞。但是改装后的锤子有一个缺点:每次挥舞锤子时,对于这RC的区域中的所有地洞,锤子会打掉恰好一只地鼠。也就是说锤子覆盖的区域中,每个地洞必须至少有1只地鼠,且如果某个地洞中地鼠的个数大于1,那么这个地洞只会有1只地鼠被打掉,因此每次挥舞锤子时,恰好有RC只地鼠被打掉。由于锤子的内部结构过于精密,因此在游戏过程中你不能旋转锤子(即不能互换R和C)。
你可以任意更改锤子的规格(即你可以任意规定R和C的大小),但是改装锤子的工作只能在打地鼠前进行(即你不可以打掉一部分地鼠后,再改变锤子的规格)。你的任务是求出要想打掉所有的地鼠,至少需要挥舞锤子的次数。
Input
第一行包含两个正整数M和N;
下面M行每行N个正整数描述地图,每个数字表示相应位置的地洞中地鼠的数量。
Output
输出一个整数,表示最少的挥舞次数。
Sample Input
3 3
1 2 1
2 4 2
1 2 1
Sample Output
4
Hint
由于你可以把锤子的大小设置为1*1,因此本题总是有解的。
$1 \leq M,N \leq 100 $,其他数据不小于0,不大于\(10^5\)
Solution
显然,可以使用枚举 r 和 c 的方式,可以发现,二维差分以后,就可以得到每个点作为子矩阵左上角的敲击次数(如果该方案可行的话),若一个 r x c 的方案不可行,当且仅当利用差分进行区间减法之后出现点的差分值为负,这样时间效率为 O(n^4);
考虑进行优化,容易发现,对于上述算法,一个方案可能可行,当且仅当这个方案满足\((rc)|(\Sigma a_{i} )\),且答案一定为 $ \frac { \Sigma a_{i} } {rc} $ ;
故容易发现两种简单剪枝方式:
- 可行性剪枝: 判断(rc)|(nm)是否成立;
- 最优性剪枝:判断当前枚举的 r x c 是否比答案的大。
由于剪枝后避免了众多不可行的运算,时间复杂度O(能过)。
Code
#include <stdio.h>
#include <string.h>
#define R register
#define MN 155
inline int read(){
R int x; R bool f; R char c;
for (f=0; (c=getchar())<'0'||c>'9'; f=c=='-');
for (x=c-'0'; (c=getchar())>='0'&&c<='9'; x=(x<<3)+(x<<1)+c-'0');
return f?-x:x;
}
int v[MN][MN],c[MN][MN],p[MN][MN],n,m,ans=1,sum;
int main(){
n=read(),m=read();
for (R int i=1; i<=n; ++i)
for (R int j=1; j<=m; ++j)
v[i][j]=read(),sum+=v[i][j],c[i][j]=v[i][j]+v[i-1][j-1]-v[i][j-1]-v[i-1][j];
for (R int r=n; r; --r)
for (R int C=m; C; --C){
R int res=r*C;
if (sum%res||res<ans) continue;
R bool f=1;memcpy(p,c,sizeof(c));
for (R int i=1; i<=n; ++i)
for (R int j=1; j<=m; ++j){
if (p[i][j]<0){
f=0; break;
}
if (!p[i][j]) continue;
if (i+r>n+1||j+C>m+1){
f=0; break;
}
p[i][j+C]+=p[i][j];
p[i+r][j]+=p[i][j];
p[i+r][j+C]-=p[i][j];
}
if (f) ans=res;
}
printf("%d\n",sum/ans);
return 0;
}
【BZOJ2241】【Sdoi2011R1D1】打地鼠的更多相关文章
- BZOJ2241 [SDOI2011]打地鼠 【模拟】
题目 打地鼠是这样的一个游戏:地面上有一些地鼠洞,地鼠们会不时从洞里探出头来很短时间后又缩回洞中.玩家的目标是在地鼠伸出头时,用锤子砸其头部,砸到的地鼠越多分数也就越高. 游戏中的锤子每次只能打一只地 ...
- bzoj2241: [SDOI2011]打地鼠
暴力. O(n^6)暴力卡过,72ms. 莫名其妙做这道题时感觉十分烦躁,难受,只能这样了. O(n^4)的方法是这样差分一下.判断的时候tmp=t[i][j],t[i][j]-=tmp,t[i+r] ...
- [bzoj2241]打地鼠
先考虑如何判定一个r*c的矩阵是否符合条件,容易发现左上角的点无法被别的矩阵砸到,要求左上角r*c的矩阵中不能超过最左上角的元素,之后同理不断枚举最上&最左的非0点,可以用差分来优化,复杂度为 ...
- 2DToolkit官方文档中文版打地鼠教程(三):Sprite Collections 精灵集合
这是2DToolkit官方文档中 Whack a Mole 打地鼠教程的译文,为了减少文中过多重复操作的翻译,以及一些无必要的句子,这里我假设你有Unity的基础知识(例如了解如何新建Sprite等) ...
- 2DToolkit官方文档中文版打地鼠教程(二):设置摄像机
这是2DToolkit官方文档中 Whack a Mole 打地鼠教程的译文,为了减少文中过多重复操作的翻译,以及一些无必要的句子,这里我假设你有Unity的基础知识(例如了解如何新建Sprite等) ...
- 2DToolkit官方文档中文版打地鼠教程(一):初始设置
这是2DToolkit官方文档中 Whack a Mole 打地鼠教程的译文,为了减少文中过多重复操作的翻译,以及一些无必要的句子,这里我假设你有Unity的基础知识(例如了解如何新建Sprite等) ...
- iOS版打地鼠游戏源码
打地鼠游戏源码,游戏是一款多关卡基于cocos2d的iPad打地鼠游戏源码,这也是一款高质量的打地鼠游戏源码,可以拥有逐步上升的关卡的设置,大家可以在关卡时设置一些商业化的模式来盈利的,非常完美的一款 ...
- 无聊的人用JS实现了一个简单的打地鼠游戏
直入正题,用JS实现一个简单的打地鼠游戏 因为功能比较简单就直接裸奔JS了,先看看效果图,或者 在线玩玩 吧 如果点击颜色比较深的那个(俗称坏老鼠),将扣分50:如果点击颜色比较浅的那个(俗称好老鼠) ...
- 打地鼠游戏iOS源码项目
打地鼠游戏源码,游戏是一款多关卡基于cocos2d的iPad打地鼠游戏源码,这也是一款高质量的打地鼠游戏源码,可以拥有逐步上升的关卡的设置,大家可以在关卡时设置一些商业化的模式来盈利的,非常完美的一款 ...
随机推荐
- c语言一,二数组
一.PTA实验作业 题目1:7-4 简化的插入排序 1. 本题PTA提交列表 2. 设计思路 1.定义整形变量N,temp,i. 2.输入N 3.通过for(i=1;i<=N;i++)的循环语句 ...
- Beta冲刺第四天
一.昨天的困难 没有困难. 二.今天进度 1.林洋洋:修复协作详情,日程详情日程类型显示纠正 2.黄腾达:修复管理者查看协作成员可以移除自己的问题,加入登录.注册表单按回车键就可直接完成操作的功能 3 ...
- 20162330 实验二 《Java面向对象程序设计》 实验报告
2016-2017-2 实验报告目录: 1 2 3 4 5 20162330 实验二 <Java面向对象程序设计> 实验报告 课程名称:<程序设计与数据结构> 学生班级:162 ...
- Android 4.4 沉浸式透明状态栏
原文链接:http://www.bkjia.com/Androidjc/913061.html 第一种方法 这里写代码片第一种方法,在代码设置: if(VERSION.SDK_INT >= VE ...
- Struts2之Action的实现
对于Struts2框架来说,最重要的莫过于Action类的编写,类比于Servlet,Action类也是通过类的实例对象调用方法来处理请求的,Action类的实例对象是由Struts2的核心Filte ...
- VS2013 重装 无法打开项目
今天遇到的奇葩BUG,耗时我一下午,现在跟大家说道说道. 今天重装系统,让各种开发环境开发工具自然要重装一次,最后装完VS2013,然后刚好客户打电话要改点东西,然后我就双击项目准备打开改,然后奇葩来 ...
- Nginx在windows环境下的安装与简单配置
版权声明:本文为博主原创文章,未经博主允许不得转载. 一. 下载并安装Nginx 去Nginx官网下载 我这里选取nginx/Windows-1.10.3版本,下载后解压出来即可,解压出来的路径不能含 ...
- 爬虫小探-Python3 urllib.request获取页面数据
使用Python3 urllib.request中的Requests()和urlopen()方法获取页面源码,并用re正则进行正则匹配查找需要的数据. #forex.py#coding:utf-8 ' ...
- HTTP协议扫盲(六)InputStream的复用
一.问题提出 在进行网关引擎开发时,获取到一个http请求的inputstream后,可能要多次利用它进行read操作.由于流读过一次就不能再读了,所以需要实现InputStream的复制. 而Inp ...
- leetcode算法:Island Perimeter
You are given a map in form of a two-dimensional integer grid where 1 represents land and 0 represen ...