题目描述

Farmer John has decided to assemble a panoramic photo of a lineup of his N cows (1 <= N <= 200,000), which, as always, are conveniently numbered from 1..N. Accordingly, he snapped M (1 <= M <= 100,000) photos, each covering a contiguous range of cows: photo i contains cows a_i through b_i inclusive. The photos collectively may not necessarily cover every single cow.

After taking his photos, FJ notices a very interesting phenomenon: each photo he took contains exactly one cow with spots! FJ was aware that he had some number of spotted cows in his herd, but he had never actually counted them. Based on his photos, please determine the maximum possible number of spotted cows that could exist in his herd. Output -1 if there is no possible assignment of spots to cows consistent with FJ's photographic results.

农夫约翰决定给站在一条线上的N(1 <= N <= 200,000)头奶牛制作一张全家福照片,N头奶牛编号1到N。

于是约翰拍摄了M(1 <= M <= 100,000)张照片,每张照片都覆盖了连续一段奶牛:第i张照片中包含了编号a_i 到 b_i的奶牛。但是这些照片不一定把每一只奶牛都拍了进去。

在拍完照片后,约翰发现了一个有趣的事情:每张照片中都有一只身上带有斑点的奶牛。约翰意识到他的牛群中有一些斑点奶牛,但他从来没有统计过它们的数量。 根据照片,请你帮约翰估算在他的牛群中最多可能有多少只斑点奶牛。如果无解,输出“-1”。

Input

输入输出格式

输入格式:

  • Line 1: Two integers N and M.

  • Lines 2..M+1: Line i+1 contains a_i and b_i.

输出格式:

  • Line 1: The maximum possible number of spotted cows on FJ's farm, or -1 if there is no possible solution.

输入输出样例

输入样例#1:

5 3
1 4
2 5
3 4
输出样例#1:

1 
题解:
这道题,要画画图理解才行。其实就是要求 1.在每个区间里面都必须要有一棵树被砍。

2.并且每个区间里面都必须只有一棵树被砍。
这两句话很关键。于是我们可以根据这两个条件做dp。
首先我们设f[i]为前i个树满足条件且最多能有多少树没有被砍,便有f[i]=max(f[j])+1
那么j的范围呢?
根据条件1,我们可以确定左边界
(因为必须选,那么上一个区间也一定要选,故j一定是>=最靠近i左边的区间的左坐标)
根据条件2,我们可以确定右边界。
(因为必须选一个,所以包含i的区间里面的任意一个j都不能转移,即j<=包含i的区间的最小的左坐标)
故我们可以根据这些限定用单调队列来优化原来的dp方程。
 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
struct Messi
{
int l,r;
}a[];
int n,m,rp[],lp[],q[],f[];
int main()
{int i,j,head,tail;
//freopen("search.in","r",stdin);
//freopen("search.out","w",stdout);
cin>>n>>m;
for (i=;i<=n+;i++)
rp[i]=i-;
for (i=;i<=m;i++)
{
scanf("%d%d",&a[i].l,&a[i].r);
lp[a[i].r+]=max(lp[a[i].r+],a[i].l);
rp[a[i].r]=min(rp[a[i].r],a[i].l-);
}
for (i=n;i>=;i--) rp[i]=min(rp[i],rp[i+]);
for (i=;i<=n+;i++) lp[i]=max(lp[i],lp[i-]);
j=;
head=tail=;
for (i=;i<=n+;i++)
{
while (j<=rp[i]&&j<=n)
{
if (f[j]==-)
{
j++;
continue;
}
while (f[j]>f[q[tail]]&&tail>=head) tail--;
++tail;
q[tail]=j;
j++;
}
while (q[head]<lp[i]&&head<=tail) head++;
if (head<=tail) f[i]=f[q[head]]+(i!=n+?:);
else f[i]=-;
}
if (f[n+]!=-)
cout<<f[n+];
else cout<<-;
}


[USACO13OPEN]照片Photo的更多相关文章

  1. 洛谷 P3084 [USACO13OPEN]照片Photo 解题报告

    [USACO13OPEN]照片Photo 题目描述 农夫约翰决定给站在一条线上的\(N(1 \le N \le 200,000)\)头奶牛制作一张全家福照片,\(N\)头奶牛编号\(1\)到\(N\) ...

  2. P3084 [USACO13OPEN]照片Photo (dp+单调队列优化)

    题目链接:传送门 题目: 题目描述 Farmer John has decided to assemble a panoramic photo of a lineup of his N cows ( ...

  3. P3084 [USACO13OPEN]照片Photo

    题目描述 农夫约翰决定给站在一条线上的N(1 <= N <= 200,000)头奶牛制作一张全家福照片,N头奶牛编号1到N. 于是约翰拍摄了M(1 <= M <= 100,00 ...

  4. 洛谷3084 [USACO13OPEN]照片Photo

    原题链接 神仙\(DP\)啊... 题解请移步隔壁大佬的博客\(QAQ\) #include<cstdio> using namespace std; const int N = 2e5 ...

  5. Luugu 3084 [USACO13OPEN]照片Photo

    很神仙的dp...假装自己看懂了,以后回来复习复习... 设$f_{i}$表示从$1$到$i$,且$i$这个点必放的最大数量. 一个区间有两个限制条件:至少放一个,至多放一个. 因为一个区间至多要放一 ...

  6. P3084 [USACO13OPEN]照片Photo dp

    题意: 有n个区间,每个区间只能有一个斑点奶牛,问最多有几个斑点奶牛. 思路: 首先要处理出每个点的L[i],R[i]. L[i]表示L[i]-i-1之间一定有一个点.i也是选中的. R[i]表示R[ ...

  7. [USACO13OPEN]照片Photo 题解

    题面 这道题似乎可以用单调队列优化DP做,但这里讲的是一种差分约束的思路; 设s[i]表示1~i中选了多少个: s[b[i]]-s[a[i]-1]<=1; s[b[i]]-s[a[i]-1]&g ...

  8. 【简●解】[USACO] 照片Photo

    [简●解][USACO] 照片Photo [题目大意] 在\(1\)~\(N\)的序列上有\(M\)个区间,使得这\(M\)个小区间每个覆盖了且仅覆盖了一个点,求最多点数,如果无解,输出\(-1\). ...

  9. P3084 [USACO13OPEN]照片(差分约束)

    (已经有了简化版题面) 又秒了一次dp233 本来按照感觉瞎写了一发... 但还是老老实实列式子吧.... 对差分约束有了更深的理解 #include<cstdio> #include&l ...

随机推荐

  1. Beta版本敏捷冲刺每日报告——Day4

    1.情况简述 Beta阶段第四次Scrum Meeting 敏捷开发起止时间 2017.11.5 08:00 -- 2017.11.5 22:00 讨论时间地点 2017.11.5晚9:00,软工所实 ...

  2. 视图和URL配置

    视图和URL配置 实验简介 上一章里我们介绍了如何创建一个Django项目并启动Django的开发服务器.本章你将学到用Django创建动态网页的基本知识. 同时,也教会大家怎么在本地机器上建立一个独 ...

  3. [Android FrameWork 6.0源码学习] View的重绘ViewRootImpl的setView方法

    博客首页:http://www.cnblogs.com/kezhuang/p/ 本篇文章来分析一下WindowManager的后续工作,也就是ViewRootImpl的setView函数的工作 /i* ...

  4. 16-TypeScript装饰器模式

    在客户端脚本中,有一个类通常有一个方法需要执行一些操作,当我们需要扩展新功能,增加一些操作代码时,通常需要修改类中方法的代码,这种方式违背了开闭的原则. 装饰器模式可以动态的给类增加一些额外的职责.基 ...

  5. PHP常见排序算法

    $a = [1, 3, 5, 2, 4, 6, 12, 60, 45, 10, 32];$len = count($a);$num=0;/* * 冒泡排序 * 原理:不停的对相邻两个数进行比较,直到最 ...

  6. 帧动画的创建方式 - 纯Java代码方式

    废话不多说,先看东西 帧动画的创建方式主要以下2种: * 用xml创建动画: * 纯Java代码创建动画:   本文内容主要关注 纯java代码创建帧动画 的方式: 用xml创建帧动画:http:// ...

  7. js new到底干了什么,new的意义是什么?

    学过JS的都知道 创建对象可以这样 var obj=new Object(); var obj=new Function(); 用内置的函数对象来构造对象 还可以这样自定义函数 function te ...

  8. SpringBoot应用的集成测试

    一.概念和定义 进行软件开发的时候,我们会写很多代码,不过,再过六个月(甚至一年以上)你知道自己的代码怎么运作么?通过测试(单元测试.集成测试.接口测试)可以保证系统的可维护性,当我们修改了某些代码时 ...

  9. GIT入门笔记(7)- 修改文件并向版本库提交

    1.修改文件vi readme.txt git status 发现被修改的文件列表git diff readme.txt 2.git add readme.txt git status  --注意gi ...

  10. Oracle复合B*tree索引branch block内是否包含非先导列键值?

    好久不碰数据库底层细节的东西,前几天,一个小家伙跑来找我,非要说复合b*tree index branch block中只包含先导列键值信息,并不包含非先导列键值信息,而且还dump了branch b ...