Dijkstra在正权图上运行速度很快,但是它不能解决有负权的最短路,如下图:

Dijkstra运行的结果是(以1为原点):0 2 12 6 14;

但手算的结果,dist[4]的结果显然是5,为什么会出现这种情况呢?原因很显然,Dijkstra认为,从一个更长的边过来不会比一个更短的边过来更短(读起来很绕口,但请读者好好理解这句话!)但是由于出现了负权边,可以“救回来”,就像松弛2号节点一样。

Bellman_Ford:

知道了Dijkstra为什么不能做负权图之后,我们来看看Bellman-ford算法。它的基本思想是:图的最短路,既不会包含正环(可以不走),更不能有负环(否则一直走就可以无限小),因此最多经过n-1条边(每个节点都经过一次),bellman-ford实际上是枚举距离源点多少条边,尝试对每条边松弛的过程。请读者联系上图,自行推导一下Bellman_ford的运行过程

样例如下:

5 5
1 2 2
1 3 12
3 2 -13
2 4 4
3 5 2

朴素Bellman_Ford算法的时间复杂度是O(NM);程序如下:

 #include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
int n,m,s,dist[],v[],w[],u[],cnt,x,y,z;
void bellman_ford(int s)
{
memset(dist,,sizeof(dist));
dist[s]=;
for(int i=;i<=n-;i++)
{
for(int j=;j<=m;j++)
{
dist[v[j]]=min(dist[v[j]],dist[u[j]]+w[j]);
}
}
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d %d %d",&u[i],&v[i],&w[i]);
}
bellman_ford();
for(int i=;i<=n;i++)
{
cout<<dist[i]<<" ";
}
return ;
}

SPFA:

SPFA是对Bellman_Ford算法的优化,它采用队列保存即将松弛其他点的节点,每次选与队首相连的点进行松弛,可以使用链式前向星(邻接表)实现,避免了Bellman_Ford算法许多无效的松弛操作,平均复杂度O(KM),K为平均松弛次数,也有可能被网格图卡回O(NM),是不稳定的算法。程序如下:

 #include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
int n,m,s,dist[],v[],w[],nxt[],head[],cnt,x,y,z;
bool vis[];
void add(int a,int b,int c)
{
v[++cnt]=b;
w[cnt]=c;
nxt[cnt]=head[a];
head[a]=cnt;
}
void SPFA(int s)
{
memset(dist,,sizeof(dist));
queue<int>q;
dist[s]=;
vis[s]=;
q.push(s);
while(!q.empty())
{
int c=q.front();
q.pop();
vis[c]=;
for(int i=head[c];i;i=nxt[i])
{
int y=v[i];
if(dist[y]>=dist[c]+w[i])
{
dist[y]=dist[c]+w[i];
if(!vis[y])
{
q.push(y);
vis[y]=;
}
}
}
}
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
SPFA();
for(int i=;i<=n;i++)
{
cout<<dist[i]<<" ";
}
return ;
}

  

Bellman-Ford&&SPFA算法详解的更多相关文章

  1. 图的最短路径-----------SPFA算法详解(TjuOj2831_Wormholes)

    这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该 ...

  2. SPFA 算法详解

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径 ...

  3. SPFA 算法详解( 强大图解,不会都难!) (转)

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径 ...

  4. SPFA算法详解

    前置知识:Bellman-Ford算法 前排提示:SPFA算法非常容易被卡出翔.所以如果不是图中有负权边,尽量使用Dijkstra!(Dijkstra算法不能能处理负权边,但SPFA能) 前排提示*2 ...

  5. Bellman-Ford算法与SPFA算法详解

    PS:如果您只需要Bellman-Ford/SPFA/判负环模板,请到相应的模板部分 上一篇中简单讲解了用于多源最短路的Floyd算法.本篇要介绍的则是用与单源最短路的Bellman-Ford算法和它 ...

  6. 【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?

    简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以 ...

  7. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  8. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  9. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

随机推荐

  1. jquery的扩展,及编辑插件的书写格式

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  2. 09-python的面向对象

    # 1. 面向对象概述(ObjectOriented,OO) - OOP思想 - 接触到任意一个任务,首先想到的是任务这个世界的构成,是由模型构成的 - 几个名词 - OO:面向对象 - OOA:面向 ...

  3. spring(一):spring的基础以及组件

    spring简介 spring是一种开源轻量级框架,是为了解决企业应用程序复杂性而创建的 spring是企业应用开发的“一站式”框架,致力于为javaEE应用的各层(表现层.业务层.持久层)开发提供解 ...

  4. console.log的高级用法

    //基本用法 console.log('最常见用法\n换行'); console.error('输出错误信息 会以红色显示'); console.warn('打印警告信息 会以黄色显示'); cons ...

  5. Docker Swanm集群配置

    首先 可以用ContOS虚拟机   克隆  5个虚拟机,注意(克隆主机必须装了Docker,克隆后,克隆机都会有Docker) 配置 网络 克隆CentOS虚拟机 最后和到如下结果 打开2377端口 ...

  6. pwd - 显示出当前/活动目录的名称

    总览 (SYNOPSIS) pwd [OPTION] 描述 (DESCRIPTION) 显示出 完整的 当前 活动目录 名称. --help 显示 帮助 信息, 然后 退出 --version 显示 ...

  7. route - 显示 / 操作IP选路表

    总览 SYNOPSIS route [-CFvnee] route [-v] [-A family] add [-net|-host] target [netmask Nm] [gw Gw] [met ...

  8. BZOJ2280 [Poi2011]Plot 二分+倍增+最小圆覆盖

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2280 https://loj.ac/problem/2159 题解 显然对于一段的 \(q_i ...

  9. JSOI2018冬令营游记&总结(迁移自洛谷博客)

    游记 一开始在冬令营还没开始的时候,十分期待,殊不知每天都有一场浩劫在等着我. Day0 10:50出发,看见lbn同学发了一条说说,也随便发了一个. 然后在车上一直在睡觉,现在感觉挺后悔的,其实可以 ...

  10. Python repr, str, eval 使用小记 及 str 和 repr的区别

    >>> s = '1+2'>>> x = eval(s) #把引号剥离一次,就变成了运算1+2>>> x3>>> ss = st ...