[杂题]:group(状压DP+轮廓线)
题目描述
$pure$在玩一个战略类游戏。现在有一个士兵方阵,每行有若干士兵,每个士兵属于某个兵种。行的顺序不可改变,且每一行中士兵的顺序也不可改变。但由于每一行都有$C$个位置($C$不小于任一行的士兵数),她能够安排每行的士兵依次站在某几个位置上。
对于每一个士兵,令其前后左右相邻四个位置上有$v$个和他种类相同的士兵,则$pure$会获得$v$的布阵分数。现在$pure$想知道她最多能够获得多少布阵分数。
输入格式
第一行包含两个整数$R,C$,分别表示行数,以及每一行的位置数。
接下来$R$行,每行一个由大写字母构成的字符串,同一字母的士兵为同一种类。
输出格式
一行一个整数,表示$pure$能够获得的最高布阵分数。
样例
样例输入:
2 5
ABBCD
AC
样例输出:
6
数据范围与提示
样例解释:
布阵如下:
ABBCD
A__C_
共获得$6$分。
数据范围:
对于$20\%$的数据,$R\leqslant 3,C\leqslant 4$;
对于$40\%$的数据,$R\leqslant 16$;
对于$100\%$的数据,$R\leqslant 128,C\leqslant 16$,字符串长度不超过$C$。
题解
我们可以只考虑左边和上边的格子,因为兵种一样是相互的,所以最后再乘$2$即可。
先考虑暴力的状压,无非就是枚举上一行的状态,然后再枚举本行的状态,取$\max$,时间复杂度是$\Theta((C_C^{\frac{C}{2}})^2\times C\times R)$的。
然后,我们发现,瓶颈就在于枚举所有的状态,所以我们可以利用轮廓线。
如果你打过插头$DP$,这将非常好理解,枚举行变成了枚举单个格,能对其作出贡献的只有其左边和上边的格了。
代码实现稍繁琐……
时间复杂度:$\Theta(2^C\times C\times R)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
int r,c;
char ch[20];
int Map[150][20];
int Mapl[100000][20],Mapr[100000][20];
int dp[2][100000];
bool now;
int ans;
int main()
{
scanf("%d%d",&r,&c);
for(int i=1;i<=r;i++)
{
scanf("%s",ch+1);
Map[i][0]=strlen(ch+1);
for(int j=1;j<=Map[i][0];j++)
Map[i][j]=ch[j]-'A'+1;
}
memset(dp,-0x3f,sizeof(dp));
dp[0][0]=0;
for(int i=0;i<(1<<c);i++)
{
for(int j=2;j<=c+1;j++)
Mapl[i][j]=Mapl[i][j-1]+(i&(1<<(j-2))?1:0);
for(int j=c-1;j;j--)
Mapr[i][j]=Mapr[i][j+1]+(i&(1<<j)?1:0);
}
for(int i=1;i<=r;i++)
{
for(int j=1;j<=c;j++)
{
now^=1;
memset(dp[now],-0x3f,sizeof(dp[now]));
for(int k=0;k<(1<<c);k++)
{
if(Map[i][Mapl[k][j]+1])
dp[now][((((k>>j)<<1)|1)<<(j-1))|(k&((1<<(j-1))-1))]=max(dp[now][((((k>>j)<<1)|1)<<(j-1))|(k&((1<<(j-1))-1))],dp[!now][k]+(((k&(1<<j-2))?Map[i][Mapl[k][j]]:0)==Map[i][Mapl[k][j]+1])+(((k&(1<<j-1))?Map[i-1][Map[i-1][0]-Mapr[k][j]]:0)==Map[i][Mapl[k][j]+1]));
dp[now][((((k>>j)<<1)|0)<<(j-1))|(k&((1<<(j-1))-1))]=max(dp[now][((((k>>j)<<1)|0)<<(j-1))|(k&((1<<(j-1))-1))],dp[!now][k]);
}
}
for(int j=0;j<(1<<c);j++)
if(Mapl[j][c+1]!=Map[i][0])dp[now][j]=-0x3f3f3f3f;
}
for(int i=0;i<(1<<c);i++)
ans=max(ans,dp[now][i]);
printf("%d",(ans<<1));
return 0;
}
rp++
[杂题]:group(状压DP+轮廓线)的更多相关文章
- [luoguP3694] 邦邦的大合唱站队/签到题(状压DP)
传送门 来自kkk的题解: 70分做法:枚举每个学校顺序,暴力. 100分:状压dp.从队列头到尾DP, 状态:f[i]表示i状态下最小的出列(不一致)的个数. 比如f[1101]表示从头到位为1/3 ...
- group:状压dp,轮廓线
神仙题.但是难得的傻孩子cbx没有喊题解,所以也就难得的自己想出来了一个如此神仙的题. 如果是自己想的,说它神仙是不是有点不合适啊..? 反正的确不好像.关键就在于这个标签.颓完标签就差不多会了. % ...
- 【专业找水题】状压dp最水题,没有之一
题目链接 现在代码能力没上升,倒是越来越会找水题了(比例题还水的裸题你值得拥有) 这网站不是针对竞赛的,所以时空限制都很宽松 然后就让我水过去了 对于每个点,包括自己的前m个元素是否取都是一种状态,所 ...
- group 状压dp
应某些人要求,我把标签删掉了 这是一道好题. 一看$c<=16$果断状压,但是怎么压? 一个很显然的思路是,枚举上下两层的状态,每一层的状态极限有$C(c,c/2)$,c=16的时候有13000 ...
- nefu1109 游戏争霸赛(状压dp)
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...
- 刷题向》关于第一篇状压DP BZOJ1087 (EASY+)
这是本蒟蒻做的第一篇状压DP,有纪念意义. 这道题题目对状压DP十分友善,算是一道模板题. 分析题目,我们发现可以用0和1代表每一个格子的国王情况, 题目所说国王不能相邻放置,那么首先对于每一行是否合 ...
- 【bzoj1087】【互不侵犯King】状压dp裸题(浅尝ACM-D)
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=54329606 向大(hei)佬(e)势力学(di ...
- QDUOJ 来自xjy的签到题(bfs+状压dp)
来自xjy的签到题 Description 爱丽丝冒险来到了红皇后一个n*n大小的花园,每个格子由'.'或'#'表示,'.'表示爱丽丝可以到达这个格子,‘#’表示爱丽丝不能到达这个格子,爱丽丝每1 ...
- POJ 3254 Corn Fields (状压DP,轮廓线DP)
题意: 有一个n*m的矩阵(0<n,m<=12),有部分的格子可种草,有部分不可种,问有多少种不同的种草方案(完全不种也可以算1种,对答案取模后输出)? 思路: 明显的状压DP啦,只是怎样 ...
随机推荐
- 网易新闻实战 --- flask,ORM, Ajax异步删除
项目概述: 包含功能: 前端-- 新闻首页 新闻分类页 新闻详情页 后端-- 后台新闻管理(列表,分页) 新增新闻 修改新闻 删除新闻(AJAX)
- 字符串类——KMP子串查找算法
1, 如何在目标字符串 s 中,查找是否存在子串 p(本文代码已集成到字符串类——字符串类的创建(上)中,这里讲述KMP实现原理) ? 1,朴素算法: 2,朴素解法的问题: 1,问题:有时候右移一位是 ...
- python3入门之基础语法
Python 是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言.Python 的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号,它具有比其他语言更有特色语法 ...
- 《JAVA设计模式》之命令模式(Command)
在阎宏博士的<JAVA与模式>一书中开头是这样描述命令(Command)模式的: 命令模式属于对象的行为模式.命令模式又称为行动(Action)模式或交易(Transaction)模式. ...
- Winfrom传值 分类: C# 2015-07-22 15:41 1人阅读 评论(0) 收藏
以前对WinForm窗体显示和窗体间传值了解不是很清楚 最近做了一些WinForm项目,把用到的相关知识整理如下 A.WinForm中窗体显示 显示窗体可以有以下2种方法: Form.Show ...
- vue中监听返回键
问题:在项目中,我们常常有需求,当用户在填写表单时,点击返回的时候,我们希望加一个弹窗,确认离开吗,确认将保存为草稿 解决方案:利用 H5的 pushstate(个人理解为增加页面栈)特性与onpop ...
- Trait这个类的特性
php从以前到现在一直都是单继承的语言,无法同时从两个基类中继承属性和方法,为了解决这个问题,php出了Trait这个特性 用法:通过在类中使用use 关键字,声明要组合的Trait名称,具体的Tra ...
- printcap - 打印机相容性数据库
总览 SYNOPSIS printcap 描述 DESCRIPTION Printcap 是 termcap(5) 的簡單版, 用來描述 line printers. 當用到 spool 系統時, 一 ...
- Tutorial1
一 Introduction to tf2 本部分是关于tf2简单介绍,比如tf2能做什么,并使用一个turtlesim的例子来显示tf2在多机器人中的一些能力.同时也包括一些工具的使用,比如tf2_ ...
- linux的svn服务器搭建--Subversion Edge
linux下的collabnetsubversionedge的安装: 安装条件(运行环境) jdk + python + httpd 1.root用户下建立svnroot用户,及设定密码 userad ...