POJ 2995 Brackets 区间DP

题意

大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配。需要注意的是这里的匹配规则。

解题思路

区间DP,开始自己没想到是区间DP,以为就是用栈进行模拟呢,可是发现就是不大对,后来想到是不是使用DP,但是开始的时候自己没有推出递推关系,后来实在想不出来看的题解,才知道是区间DP,仔细一想确实是啊。

下面就是状态转移方程:

\[\begin{cases}dp[i][j] &=& dp[i+1][j-1]+if(str[i]和str[j]匹配) \\dp[i][j] &=& dp[i][k]+dp[k+1][j] & k=i+1,i+2,………j-1\end{cases}
\]

当初知道了转移方程,就自己写代码,可是就是不对,下面有两个代码,一个是错误的,一个是正确的,两个对比看一看原因。

代码实现

//这个是正确的
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e3+7;
char str[maxn];
int dp[maxn][maxn];
int main()
{
while(scanf("%s", &str))
{
if(strcmp("end", str)==0)
break;
int n=strlen(str);
memset(dp, 0, sizeof(dp));
//下面书写的格式很重要,先算长度为1的区间,然后再算区间为2的区间,以此类推
for(int len=1; len<=n; len++)
{
for(int L=0; L+len<n; L++)
{
int R=L+len;
if((str[L]=='(' && str[R]==')') || (str[L]=='[' && str[R]==']'))
{
dp[L][R]=dp[L+1][R-1]+2;
}
for(int k=L; k<R; k++)
{
dp[L][R]=max(dp[L][R], dp[L][k]+dp[k+1][R]);
}
}
}
printf("%d\n", dp[0][n-1]);
}
return 0;
}
//这个是错误的代码,下面分析主要原因,连样例都过不了
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
using namespace std;
stack<char> st;
const int maxn=1e4+7;
char str[maxn];
int dp[maxn][maxn];
int main()
{
while(scanf("%s", str))
{
if(strcmp("end", str)==0)
break;
int n=strlen(str);
memset(dp, 0, sizeof(dp));
//下面的代码其实是有点问题的,应该是先算长度全为1的区间段,然后再是长度为2的,以此类推
//为什么要这这样呢,因为下面的max函数中第二项是一个重要的部分
for(int L=0; L<len; L++)
{
for(int R=i+1; R<len; R++)
{
dp[L][R]=dp[L+1][R-1];
if(str[L]=='(' && str[R]==')' || str[L]=='[' && str[R]==']')
{
dp[L][R]+=2;
}
for(int k=L; k<R; k++)
{
//下面的后两项之和应该在计算dp[L][R]之前就应该计算了,但是这里可能没有。
//所以区间DP的书写格式还是有点套路的。
dp[L][R]=max(dp[L][R], dp[L][k]+dp[k+1][R]);
}
}
}
printf("%d\n", dp[0][len-1]);
}
return 0;
}

POJ 2995 Brackets 区间DP的更多相关文章

  1. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  2. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  3. poj 2955"Brackets"(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 给你一个只由 '(' , ')' , '[' , ']' 组成的字符串s[ ], ...

  4. poj 2955 Brackets (区间dp 括号匹配)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  5. POJ 2955 Brackets 区间DP 入门

    dp[i][j]代表i->j区间内最多的合法括号数 if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']') dp[i][j] ...

  6. POJ 2955 Brackets(区间DP)

    题目链接 #include <iostream> #include <cstdio> #include <cstring> #include <vector& ...

  7. POJ 2955 Brackets 区间DP 最大括号匹配

    http://blog.csdn.net/libin56842/article/details/9673239 http://www.cnblogs.com/ACMan/archive/2012/08 ...

  8. Codeforces 508E Arthur and Brackets 区间dp

    Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...

  9. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

随机推荐

  1. jquery timeStamp属性 语法

    jquery timeStamp属性 语法 作用:timeStamp 属性包含从 1970 年 1 月 1 日到事件被触发时的毫秒数.直线模组 语法:event.timeStam 参数: 参数 描述 ...

  2. BZOJ 3173: [Tjoi2013]最长上升子序列 Splay

    一眼切~ 重点是按照 $1$~$n$ 的顺序插入每一个数,这样的话就简单了. #include <cstdio> #include <algorithm> #define N ...

  3. hdu 1051 wooden sticks (贪心+巧妙转化)

    #include <iostream>#include<stdio.h>#include<cmath>#include<algorithm>using ...

  4. poj 2566 Bound Found 尺取法 变形

    Bound Found Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2277   Accepted: 703   Spec ...

  5. Java虚拟机之垃圾回收算法思想总结

    1.引用计数法 这是个比较古老而经典的垃圾回收算法,其核心就是在对象被其他所引用的时候计数器加1,而当引用失去时减1.这个方法有非常严重的问题:无法此话有理循环引用的情况,还有就是每次进行加减操作比较 ...

  6. FLASH和EEPROM的区别

    FLASH和EEPROM的最大区别是FLASH按扇区操作,EEPROM则按字节操作,二者寻址方法不同,存储单元的结构也不同,FLASH的电路结构较简单,同样容量占芯片面积较小,成本自然比EEPROM低 ...

  7. 数据聚类算法-K-means算法

    深入浅出K-Means算法 摘要: 在数据挖掘中,K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. K-Mea ...

  8. char和vachar的字段长度怎么影响数据库的性能的

    1.限制规则 字段的限制在字段定义的时候有以下规则: a)                  存储限制 varchar 字段是将实际内容单独存储在聚簇索引之外,内容开头用1到2个字节表示实际长度(长度 ...

  9. LeetCode 14. 最长公共前缀(Longest Common Prefix)

    题目描述 编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow ...

  10. halcon

    读图write_imageread_image *图片路径 FilePath:='d:/pic/demo.jpg' *判断文件是否存在 file_exists ('/bin/cc', FileExis ...