BZOJ 4919 (树上LIS+启发式合并)
题面
给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点。每个点有一个权值v_i。
你需要将这棵树转化成一个大根堆。确切地说,你需要选择尽可能多的节点,满足大根堆的性质:对于任意两个点i,j,如果i在树上是j的祖先,那么v_i>v_j。
请计算可选的最多的点数,注意这些点不必形成这棵树的一个连通子树。
分析
由于点不需要相邻,此题其实是树上的LIS,从叶子节点向根节点形成LIS
考虑LIS的\(O(nlogn)\)算法中用到的数组,用multiset对每个节点维护这样一个数组,存储子树内的值
向上的同时合并两个multiset,用启发式合并
时间复杂度应该是\(O(nlog^2n)\)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<set>
#define maxn 200005
using namespace std;
int n;
struct edge{
int from;
int to;
int next;
}E[maxn<<1];
int head[maxn];
int sz;
void add_edge(int u,int v){
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].next=head[u];
head[u]=sz;
}
int a[maxn];
multiset<int>s[maxn];
void merge(int x,int y){//启发式合并
if(s[x].size()<s[y].size()) swap(s[x],s[y]);
for(multiset<int>::iterator it=s[y].begin();it!=s[y].end();it++){
s[x].insert(*it);
}
}
void dfs(int x,int fa){
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa){
dfs(y,x);
merge(x,y);
}
}
multiset<int>::iterator it=s[x].lower_bound(a[x]);
if(it==s[x].end()) s[x].insert(a[x]);
else{
s[x].erase(it);
s[x].insert(a[x]);
}
}
int main(){
int fa;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d %d",&a[i],&fa);
if(fa!=0){
add_edge(i,fa);
add_edge(fa,i);
}
}
dfs(1,0);
printf("%d\n",s[1].size());
}
BZOJ 4919 (树上LIS+启发式合并)的更多相关文章
- Special Segments of Permutation - CodeForces - 1156E (笛卡尔树上的启发式合并)
题意 给定一个全排列\(a\). 定义子区间\([l,r]\),当且仅当\(a_l + a_r = Max[l,r]\). 求\(a\)序列中子区间的个数. 题解 笛卡尔树上的启发式合并. \(200 ...
- BZOJ 3123 主席树 启发式合并
思路: 主席树 搞树上的k大 x+y-lca(x,y)-fa(lca(x,y)) 按照size小树往大树上插 启发式合并 n*log^2n的 搞定~ //By SiriusRen #include & ...
- BZOJ.3510.首都(LCT 启发式合并 树的重心)
题目链接 BZOJ 洛谷 详见这. 求所有点到某个点距离和最短,即求树的重心.考虑如何动态维护. 两棵子树合并后的重心一定在两棵树的重心之间那条链上,所以在合并的时候用启发式合并,每合并一个点检查sz ...
- BZOJ 3123 [SDOI2013] 森林 - 启发式合并 主席树
Description 给你一片森林, 支持两个操作: 查询$x$到$y$的$K$大值, 连接两棵树中的两个点 Solution 对每个节点$x$动态开权值线段树, 表示从$x$到根节点路径上权值出 ...
- 【csp模拟赛6】树上统计-启发式合并,线段树合并
30%:暴力 40%:枚举L,R从L~n枚举,R每增大一个,更新需要的边(bfs实现)60%:枚举每条边, 计算每条边的贡献另外20%的数据:枚举每条边,计算每条边的贡献100%:对于每一条边统计 有 ...
- BZOJ 3545: [ONTAK2010]Peaks 启发式合并 + 离线 + Splay
Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询 ...
- Codeforces 1009 F. Dominant Indices(长链剖分/树上启发式合并)
F. Dominant Indices 题意: 给一颗无向树,根为1.对于每个节点,求其子树中,哪个距离下的节点数量最多.数量相同时,取较小的那个距离. 题目: 这类题一般的做法是树上的启发式合并,复 ...
- bzoj 4919 [Lydsy1706月赛]大根堆 set启发式合并+LIS
4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 599 Solved: 260[Submit][Stat ...
- BZOJ 4919: [Lydsy1706月赛]大根堆 set启发式合并
这个和 bzoj 5469 几乎是同一道题,但是这里给出另一种做法. 你发现你要求的是一个树上 LIS,而序列上的 LIS 有一个特别神奇的 $O(n\log n) $ 做法. 就是维护一个单调递增的 ...
随机推荐
- Django【第28篇】:Django Admin的相关知识
Django Admin的相关知识 一.面向对象复习 1.类的继承 class Base(object): def __init__(self,val): self.val = val def fun ...
- 【长期计划】Atcoder题目泛做
之前学长跟我说的是700-的应该都能自己做? 然后1000-的应该都能有一定的思路? 记不清了 但总之是要智力康复一下 又加上文化课比较紧 所以这个大概就会是长期计划了 ————————————分鸽线 ...
- 如何用DNS+GeoIP+Nginx+Varnish做世界级的CDN
如何用DNS+GeoIP+Nginx+Varnish做世界级的CDN 如何用BIND, GeoIP, Nginx, Varnish来创建你自己的高效的CDN网络?CDN,意思是Content ...
- M(model)V(view)C(controller,serlvet),(分) 静态工厂模式,单例模式
- php array_values()函数 语法
php array_values()函数 语法 作用:返回数组的所有值(非键名)富瑞华大理石平台 语法:array_values(array) 参数: 参数 描述 array 必需.规定数组. ...
- HDU 6582 Path
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...
- eclipse配置Maven——菜鸟篇
首先解释关于webservice: Web service是一个平台独立的,低耦合的,自包含的.基于可编程的web的应用程序, 可使用开放的XML(标准通用标记语言下的一个子集)标准来描述.发布.发现 ...
- [CSP-S模拟测试]:毛三琛(随机化+二分答案)
题目传送门(内部题69) 输入格式 第一行正整数$n,P,k$.第二行$n$个自然数$a_i$.$(0\leqslant a_i<P)$. 输出格式 仅一个数表示最重的背包的质量. 样例 样例输 ...
- 任何国家都无法限制数字货币。为什么呢? 要想明白这个问题需要具备一点区块链的基础知识: 区块链使用的大致技术包括以下几种: a.点对点网络设计 b.加密技术应用 c.分布式算法的实现 d.数据存储技术 e.拜占庭算法 f.权益证明POW,POS,DPOS 原因一: 点对点网络设计 其中点对点的P2P网络是bittorent ,由于是点对点的网络,没有中心化,因此在全球分布式的网
任何国家都无法限制数字货币.为什么呢? 要想明白这个问题需要具备一点区块链的基础知识: 区块链使用的大致技术包括以下几种: a.点对点网络设计 b.加密技术应用 c.分布式算法的实现 d.数据存储技 ...
- wowza 降低延迟
转自:http://www.ttstream.com/wowza/live/howToAchieveTheLowestLatencyFromCaptureToPlayback 这篇文章介绍了在用R ...