当天晚上并没有看懂题意,然后就刚了40分钟F,但是没有弄出来呜呜呜。

推荐博客:  https://blog.csdn.net/Dream_maker_yk/article/details/81840495

考虑到我们写出一行和一列的情况就可以还原出整个正方形,而这一行和这一列的长度是一样的,所以我们可以合在一起dp。

我们设$f_{i, j}$表示在前$i$个格子中最长的一个颜色的长度为$j$的方案数,有转移方程:

    $f_{i, j} = \sum_{j = 1}^{i}\sum_{k = 1}^{j}f_{i - k, min(j, i - k)}$

注意到这时候我们算出来的$f_{i, j}$实际上是包含了$f_{i, j - 1}, f_{i, j - 2}...$的情况的,所以我们再差分一遍使$f_{i, j}$的定义表示为长度为$i$的序列中最长的连续相同的颜色段恰好为$j$的方案数。

然后我们只要枚举这个连续的最长段的长度去累加答案就好了,其实到现在为止我们都只是计算了一种颜色的情况,考虑到把黑白格子反一反就可以得到完全相同的另外的合法情况,所以最后把答案乘以二。

枚举时注意小细节$j$的范围要小于$n$,我就是这样RE了一次。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = ;
const ll P = 998244353LL; int n, siz;
ll f[N][N]; inline int min(int x, int y) {
return x > y ? y : x;
} int main() {
scanf("%d%d", &n, &siz); f[][] = 1LL;
for(int i = ; i <= n; i++)
for(int j = ; j <= i; j++)
for(int k = ; k <= j; k++)
f[i][j] = (f[i][j] + f[i - k][min(j, i - k)]) % P;
for(int i = n; i >= ; i--)
f[n][i] = (f[n][i] - f[n][i - ] % P + P) % P; /* for(int i = 1; i <= n; i++)
printf("%lld ", f[n][i]);
printf("\n"); */ ll ans = 0LL;
for(int i = ; i <= n; i++)
for(int j = ; j * i < siz && j <= n; j++)
ans = (ans + f[n][i] * f[n][j] % P) % P;
ans = ans * % P;
printf("%lld\n", ans); return ;
}

CF 1027E Inverse Coloring的更多相关文章

  1. Codeforces 1027E Inverse Coloring 【DP】

    Codeforces 1027E Inverse Coloring 题目链接 #include<bits/stdc++.h> using namespace std; #define N ...

  2. codeforces 1027E. Inverse Coloring(计数)

    一开始发现的性质是确定了第一行后,后面的行只需要考虑和前面的行相同或者不同,整个过程只需要考虑行,构出的图一定符合性质(即同样满足列的性质),但是接下来死活定义不出状态,事实证明自己还是想的太少了 思 ...

  3. codeforces 1027 E. Inverse coloring (DP)

    E. Inverse Coloring time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. CF1027E Inverse Coloring

    题意:n × n的矩阵,每个位置可以被染成黑/白色. 一种gay的染色是任意相邻两行的元素,每两个要么都相同,要么都不同.列同理. 一种gaygay的染色是一种gay的染色,其中没有哪个颜色的子矩阵大 ...

  5. 【CF1027E】Inverse Coloring(DP)

    题意:给出一个n*n的矩阵,要求在每个位置涂上黑/白色, 要求满足:任意相邻的两行,其颜色要么完全相同,要么完全相反 任意相邻的两列,其颜色也要么相同要么完全相反 且这个矩形中,不存在任意一个大小大于 ...

  6. Educational Codeforces Round 49 (Rated for Div. 2)

    题目链接 还缺F和G,至少上橙之后把F补了吧. A - Palindromic Twist 题意:每个字母恰好操作一次,变成其之前或者其之后的一个字母,注意'a'和'z'不互通,求是否可以变成回文串. ...

  7. Codeforces Edu Round 49 A-E

    A. Palindromic Twist 由于必须改变.所以要使\(a[i] = a[n - i + 1]\). 要么同向走,但必须满足之前的\(a[i] = a[n - i + 1]\). 要么相遇 ...

  8. CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)

    1.http://codeforces.com/problemset/problem/149/D 2.题目大意 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色, ...

  9. CF 149D Coloring Brackets 区间dp ****

    给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...

随机推荐

  1. php mysql 查询

    抓取结果集对象中数据并且转换数组 $row = mysqli_fetch_assoc(结果集对象); 从结果集对象中抓取一行记录->转换关联数组 $row = mysqli_fetch_row( ...

  2. UVA - 11107 Life Forms (广义后缀自动机)

    题意:给你n个字符串,求出在超过一半的字符串中出现的所有子串中最长的子串,按字典序输出. 对这n个字符串建广义后缀自动机,建完后每个字符串在自动机上跑一遍,沿fail树向上更新所有子串结点的出现次数( ...

  3. CodeForces - 1025D: Recovering BST (区间DP)

    Dima the hamster enjoys nibbling different things: cages, sticks, bad problemsetters and even trees! ...

  4. myeclipse2014中如何安装freeMarker插件(支持ftl语法高亮)

    MyEcplise2014安装Freemarker插件(支持.ftl文件) 1.下载插件:http://sourceforge.net/projects/freemarker-ide/?source= ...

  5. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  6. Redis底层探秘(四):整数集合及压缩列表

    整数集合 整数集合(intset)是集合键的底层实现之一,当一个集合只包含 整数值元素,并且这个集合的元素数量不多时,Redis就会使用郑书记和作为集合键的底层实现. 整数集合的实现 整数集合是red ...

  7. handlebars自定义helper方法

    handlebars相对来讲算一个轻量级.高性能的模板引擎,因其简单.直观.不污染HTML的特性,我个人特别喜欢.另一方面,handlebars作为一个logicless的模板,不支持特别复杂的表达式 ...

  8. asp.netcore di 实现批量接口注入

    废话少说,先上代码 public static Dictionary<Type, Type[]> GetImpleAndInterfaces(string assemblyName,str ...

  9. 2014.10.1 Cmd更改系统时间

    Process p = new Process(); //Process类有一个StartInfo属性 //设定程序名 p.StartInfo.FileName = "cmd.exe&quo ...

  10. 2015.3.31不使用debug/X86文件夹方式解决64/32位问题

    传统方法:在解决方案-配置管理器-新建X86平台可以解决32位兼容问题,但是Debug目录下会多出X86文件夹.不方便 另一种方法:在项目名称-属性-生成-目标平台-x86也能解决问题,而且不出现X8 ...