已知$f(x)=\ln x+ax+b (a>0)$在区间$[t,t+2],(t>0)$上的最大值为$M_t(a,b)$.若$\{b|M_t(a,b)\ge\ln2 +a\}=R$,则实数$t$的最大值为______


分析:$\min\limits_{b\in R}M_t(a,b)=\dfrac{f(x)_{max}-f(x)_{min}}{2}=\dfrac{f(t+2)-f(t)}{2}=\dfrac{\ln\frac{t+2}{t}+2a}{2}\ge\ln2+a$
化简得$4\le\dfrac{t+2}{t}$故$t\le\dfrac{2}{3}$

练习:已知$f(x)=\ln x-ax-b$,对于任意$a<0,b\in R$都存在$x_0\in[1,m]$使得$|f(x_0)|\ge1$成立,

求实数$m$的范围_____
提示:$\min\limits_{b\in R}M(a,b)=\dfrac{f(x)_{max}-f(x)_{min}}{2}=\dfrac{f(m)-f(1)}{2}\ge1$得$a\le \dfrac{\ln m-2}{m-1}$对$a<0$恒成立,

故$m\ge e^2$

MT【302】利用值域宽度求范围的更多相关文章

  1. 指针直接赋值为整型AND利用宏定义求结构体成员偏移量

    首先我们要更正一个很熟悉的概念,那就是指针不仅仅是“地址”,指针还有一个很重要的特性,那就是“类型”. 指针初始化时,“=”的右操作数; 除外,该语句表示指针为空): 所以 ; 这样的代码是不允许的. ...

  2. Python实现利用最大公约数求三个正整数的最小公倍数示例

    Python实现利用最大公约数求三个正整数的最小公倍数示例 本文实例讲述了Python实现利用最大公约数求三个正整数的最小公倍数.分享给大家供大家参考,具体如下: 在求解两个数的小公倍数的方法时,假设 ...

  3. MT【301】值域宽度

    (2015浙江理科)已知函数$f(x)=x^2+ax+b,(a,b\in R)$.记$M(a,b)$是$|f(x)|$在区间$[-1,1]$上的最大值.(1)证明:当$|a|\ge2$时,$M(a,b ...

  4. MT【62】柯西求三角值域

    求$sinx(\sqrt{cos^2x+24}-cosx)$的范围. 解答:[-5,5] $$\because (sinx \sqrt{cos^2x+24}-cosxsinx)^2$$ $$\le ( ...

  5. [MATLAB] 利用遗传算法函数求目标函数的最优解

    最近接触到了遗传算法以及利用遗传算法求最优解,所以就把这些相关的内容整理记录一下. 一.遗传算法简介(摘自维基百科) 遗传算法(英语:genetic algorithm (GA))是计算数学中用于解决 ...

  6. hdu 1217 利用flord算法求 有环图 2点之间最大值

    Arbitrage                                                      T ime Limit: 2000/1000 MS (Java/Other ...

  7. Python中利用进度条求圆周率

    从祖冲之到现在,圆周率的发展越来越丰富,求法也是越来越快其中: 1.求圆周率的方法: (1)蒙特卡罗法 这是基于“随机数”的算法,通过计算落在单位圆内的点与正方形内的比值来求圆周率PI. 如果一共投入 ...

  8. Python之利用reduce函数求序列的最值及排序

    在一般将Python的reduce函数的例子中,通常都是拿列表求和来作为例子.那么,是否还有其他例子呢?   本次分享将讲述如何利用Python中的reduce函数对序列求最值以及排序.   我们用r ...

  9. poj3254 Corn Fields 利用状态压缩求方案数;

    Corn Fields 2015-11-25 13:42:33 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10658   ...

随机推荐

  1. C. Anton and Fairy Tale

    链接 [https://codeforces.com/contest/785/problem/C] 题意 初始时有n,第1天先加m开始吃1,但总的不能超过n,第i天先加m开始吃i(如果不够或刚好就吃完 ...

  2. 数据快速批量添加到Elasticsearch

    如何把数据快速批量添加到Elasticsearch中 问题来源 最近新做一个项目,有部分搜索比较频繁的数据,而且量级比较大,预计一两年时间很可能达到100G,项目要求不要存在数据库中,最终出来有两个方 ...

  3. 多线程系列之十:Future模式

    一,Future模式 假设有一个方法需要花费很长的时间才能获取运行结果.那么,与其一直等待结果,不如先拿一张 提货单.获取提货单并不耗费时间.这里提货单就称为Future角色获取Future角色的线程 ...

  4. .net WCF WF4.5

    花了两天时间学习使用WF,把一些遇到的问题记录下来,使用的环境是VS2017,网上的资料普遍太老了 需要注意,如果使用多项目同时启动的方式需要把WCF调整到WF启动顺序之上 1.怎么使用代码活动 新建 ...

  5. Oracle RMAN备份与还原

    RMAN在数据库服务器的帮助下实现数据库文件.控制文件.数据库文件与控制文件的映像副本.归档日志文件.数据库服务器参数文件的备份. RMAN的特点: (1) 支持增量备份:传统的exp与expdp备份 ...

  6. cookie路径概念理解

    .创建一个cookie并设置 cookie的有效路径: $.cookie('the_cookie', 'the_value', { expires: 7, path: '/' }); 注:在默认情况下 ...

  7. @Param注解

    关于mybatis的@Param注解和参数 引用 https://www.cnblogs.com/whisper527/p/6568028.html 薇飘意 1,使用@Param注解 当以下面的方式进 ...

  8. WPF中自定义MarkupExtension

    在介绍这一篇文章之前,我们首先来回顾一下WPF中的一些基础的概念,首先当然是XAML了,XAML全称是Extensible Application Markup Language (可扩展应用程序标记 ...

  9. solr安装配置(一)

    本文使用的solr版本是solr-5.5.5. 步骤: 1.解压solr压缩包. 2.将solr-5.5.5\server\solr-webapp目录下面的文件拷贝到Tomcat的webapps目录下 ...

  10. TestNG之测试执行后没有生成默认测试报告(IDEA)

    使用IDEA+TestNG进行测试,没有生成 测试报告,是因为没有勾选监听器使用默认报告,具体操作如下: “Run” -> "Edit Configurations" -&g ...