Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

此题是卡塔兰数的一个应用。注意是BST而不是普通的Binary Tree,所以要满足左比根小,右比根大。

                    1                        n = 1

                2        1                   n = 2
/ \
1 2 1 3 3 2 1 n = 3
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
 
定义f(n)为unique BST的数量,以n = 3为例:
构造的BST的根节点可以取{1, 2, 3}中的任一数字。
如以1为节点,则left subtree只能有0个节点,而right subtree有2, 3两个节点。所以left/right subtree一共的combination数量为:f(0) * f(2) = 2
以2为节点,则left subtree只能为1,right subtree只能为3:f(1) * f(1) = 1
以3为节点,则left subtree有1, 2两个节点,right subtree有0个节点:f(2)*f(0) = 2
总结规律:
f(0) = 1
f(n) = f(0)*f(n-1) + f(1)*f(n-2) + ... + f(n-2)*f(1) + f(n-1)*f(0)

Java: DP

class Solution {
public int numTrees(int n) {
int[] count = new int[n + 1]; count[0] = 1;
count[1] = 1; for (int i = 2; i <= n; i++) {
for (int j = 0; j <= i - 1; j++) {
count[i] = count[i] + count[j] * count[i - j - 1];
}
} return count[n];
}
}   

Python: Math

class Solution(object):
def numTrees(self, n):
if n == 0:
return 1 def combination(n, k):
count = 1
# C(n, k) = (n) / 1 * (n - 1) / 2 ... * (n - k + 1) / k
for i in xrange(1, k + 1):
count = count * (n - i + 1) / i;
return count return combination(2 * n, n) - combination(2 * n, n - 1)

Python: DP

class Solution2:
def numTrees(self, n):
counts = [1, 1]
for i in xrange(2, n + 1):
count = 0
for j in xrange(i):
count += counts[j] * counts[i - j - 1]
counts.append(count)
return counts[-1]

C++:

class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + 1, 0);
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; ++i) {
for (int j = 0; j < i; ++j) {
dp[i] += dp[j] * dp[i - j - 1];
}
}
return dp[n];
}
};

 

类似题目:

[LeetCode] 96. Unique Binary Search Trees II 唯一二叉搜索树 II

All LeetCode Questions List 题目汇总

[LeetCode] 96. Unique Binary Search Trees 唯一二叉搜索树的更多相关文章

  1. [LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Example ...

  2. [Leetcode] Unique binary search trees 唯一二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  3. [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  4. [LeetCode] 96. Unique Binary Search Trees(给定一个数字n,有多少个唯一二叉搜索树) ☆☆☆

    [Leetcode] Unique binary search trees 唯一二叉搜索树 Unique Binary Search Trees leetcode java 描述 Given n, h ...

  5. leetcode 96. Unique Binary Search Trees 、95. Unique Binary Search Trees II 、241. Different Ways to Add Parentheses

    96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]* ...

  6. 52. leetcode 96. Unique Binary Search Trees

    96. Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) tha ...

  7. Java [Leetcode 96]Unique Binary Search Trees

    题目描述: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For ...

  8. leetcode 96 Unique Binary Search Trees ----- java

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  9. [leetcode]96. Unique Binary Search Trees给定节点形成不同BST的个数

    Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Input: ...

随机推荐

  1. IPS检测

    华为IPS语法: https://isecurity.huawei.com/sec/web/ipsmanual.do IPS漏洞查询(例如搜索反弹shell): https://isecurity.h ...

  2. Backpressure & Elastic Scaling

    spark.streaming从不稳定到稳定状态,解决数据量接收数据时突然变大,使得无法及时处理数据,稳定性得到保证 开启方式: spark.streaming.backpressure.enable ...

  3. Dubbo源码分析:设计总结

    设计原则 1.   多用组合,少用继承 2.   针对接口编程,不针对实现编程 3.   依赖抽象,不要依赖具体实现类. 设计模式 1.   策略设计模式:Dubbo扩展Spring的xml标签解析 ...

  4. 微信小程序——获取当天的前一个月至后一个月

    看标题也不知道你有没有明白我想表达的意思,先上个动态图吧~ 需要分析: 1.获取当前日期的前一个月,后一个月和当月.比如说现在是7月5号,我需要得到6月5号至8月5号的日期,同时还要返回当前的星期. ...

  5. js 对嵌套页面的父页面进行跳转

    window.top.location.href = '/stores';

  6. 四.python基础数据类型

    一.什么是数据类型? 什么是数据类型? 我们人类可以很容易的分清数字与字符的区别,但是计算机并不能呀,计算机虽然很强大,但从某种角度上看又很傻,除非你明确的告诉它,1是数字,“汉”是文字,否则它是分不 ...

  7. (a2b_hex)binascii.Error: Non-hexadecimal digit found

    HEX_CHAR = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'] 错误:16进制字 ...

  8. Windows加载器与模块初始化

    本文是Matt Pietrek在1999年9月的MSJ杂志上发表的关于Windows加载器与模块初始化方面的文章.作者深入分析了LdrpRunInitialize璕outines例程的作用,用C语言写 ...

  9. 开源项目 04 PdfSharp

    using PdfSharp.Drawing; using PdfSharp.Pdf; using System; using System.Collections.Generic; using Sy ...

  10. 14-ESP8266 SDK开发基础入门篇--上位机串口控制 Wi-Fi输出PWM的占空比,调节LED亮度,8266程序编写

    https://www.cnblogs.com/yangfengwu/p/11102026.html 首先规定下协议  ,CRC16就不加了哈,最后我会附上CRC16的计算程序,大家有兴趣自己加上 上 ...