目录

  一维Full卷积

  一维Same卷积

  一维Valid卷积

  三种卷积类型的关系

  具备深度的一维卷积

  具备深度的张量与多个卷积核的卷积

  参考资料


一维卷积通常有三种类型:full卷积、same卷积和valid卷积,下面以一个长度为5的一维张量I和长度为3的一维张量K(卷积核)为例,介绍这三种卷积的计算过程

一维Full卷积

Full卷积的计算过程是:K沿着I顺序移动,每移动到一个固定位置,对应位置的值相乘再求和,计算过程如下:

将得到的值依次存入一维张量Cfull,该张量就是I和卷积核K的full卷积结果,其中K卷积核或者滤波器或者卷积掩码,卷积符号用符号★表示,记Cfull=I★K

返回目录

一维Same卷积

卷积核K都有一个锚点,然后将锚点顺序移动到张量I的每一个位置处,对应位置相乘再求和,计算过程如下:

假设卷积核的长度为FL,如果FL为奇数,锚点位置在(FL-1)/2处;如果FL为偶数,锚点位置在(FL-2)/2处。

返回目录

一维Valid卷积

从full卷积的计算过程可知,如果K靠近I,就会有部分延伸到I之外,valid卷积只考虑I能完全覆盖K的情况,即K在I的内部移动的情况,计算过程如下:

返回目录

三种卷积类型的关系

返回目录

具备深度的一维卷积

比如x是一个长度为3,深度为3的张量,其same卷积过程如下,卷积核K的锚点在张量x范围内依次移动,输入张量的深度和卷积核的深度是相等的。

返回目录

具备深度的张量与多个卷积核的卷积

上面介绍了一个张量和一个卷积核进行卷积。他们的深度相等才能进行卷积,下面介绍一个张量与多个卷积核的卷积。同一个张量与多个卷积核的卷积本质上是该张量分别与每一个卷积核卷积,然后将每一个卷积结果在深度方向上连接起来。

举例:以长度为3、深度为3的输入张量与2个长度为2、深度为3的卷积核卷积为例,过程如下:

返回目录

参考资料

《图解深度学习与神经网络:从张量到TensorFlow实现》_张平

返回目录

深度学习面试题09:一维卷积(Full卷积、Same卷积、Valid卷积、带深度的一维卷积)的更多相关文章

  1. 深度学习面试题27:非对称卷积(Asymmetric Convolutions)

    目录 产生背景 举例 参考资料 产生背景 之前在深度学习面试题16:小卷积核级联卷积VS大卷积核卷积中介绍过小卷积核的三个优势: ①整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力. ②减 ...

  2. 深度学习面试题29:GoogLeNet(Inception V3)

    目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深 ...

  3. 深度学习面试题13:AlexNet(1000类图像分类)

    目录 网络结构 两大创新点 参考资料 第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,Alex Krizhevsky其实是Hinton的学生,这个团队领导者是 ...

  4. 深度学习面试题10:二维卷积(Full卷积、Same卷积、Valid卷积、带深度的二维卷积)

    目录 二维Full卷积 二维Same卷积 二维Valid卷积 三种卷积类型的关系 具备深度的二维卷积 具备深度的张量与多个卷积核的卷积 参考资料 二维卷积的原理和一维卷积类似,也有full卷积.sam ...

  5. 深度学习面试题25:分离卷积(separable卷积)

    目录 举例 单个张量与多个卷积核的分离卷积 参考资料 举例 分离卷积就是先在深度上分别卷积,然后再进行卷积,对应代码为: import tensorflow as tf # [batch, in_he ...

  6. 深度学习面试题24:在每个深度上分别卷积(depthwise卷积)

    目录 举例 单个张量与多个卷积核在深度上分别卷积 参考资料 举例 如下张量x和卷积核K进行depthwise_conv2d卷积 结果为: depthwise_conv2d和conv2d的不同之处在于c ...

  7. 深度学习面试题16:小卷积核级联卷积VS大卷积核卷积

    目录 感受野 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 小卷积核的优势 参考资料 感受野 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(fe ...

  8. 深度学习面试题26:GoogLeNet(Inception V2)

    目录 第一层卷积换为分离卷积 一些层的卷积核的个数发生了变化 多个小卷积核代替大卷积核 一些最大值池化换为了平均值池化 完整代码 参考资料 第一层卷积换为分离卷积 net = slim.separab ...

  9. 深度学习面试题21:批量归一化(Batch Normalization,BN)

    目录 BN的由来 BN的作用 BN的操作阶段 BN的操作流程 BN可以防止梯度消失吗 为什么归一化后还要放缩和平移 BN在GoogLeNet中的应用 参考资料 BN的由来 BN是由Google于201 ...

随机推荐

  1. python 提取目录中特定类型的文件

    python使用‘os’和‘re’模块提取目录中特定类型的文件,这两个模都是安装python自带的,所以不需要安装. 思路: 使用os库lilstdir获取文件夹中的所有文件名,然后带上文件夹路径组合 ...

  2. error: unknown filesystem; grub rescue

    我的电脑是win10+ubumtu双系统 在一次windows更新之后,系统无法进入win10和linux系统,出现如图错误 解决方案1: 大部分中文博客的解决方案:这里有个更加详细的: https: ...

  3. iptables详细介绍

    iptables简介 netfilter/iptables(简称为iptables)组成Linux平台下的包过滤防火墙,与大多数的Linux软件一样,这个包过滤防火墙是免费的,它可以代替昂贵的商业防火 ...

  4. Mysql8.0.17安装(windows10)

    1.因为系统重装  又双叒叕开始了装mysql数据库 下载安装包 https://dev.mysql.com/downloads/mysql/ 2.解压到你想安装的地方 3.解压完是没有图红色框中的文 ...

  5. 【spark】spark-2.4.4的安装与测试

    4.2.1 下载并安装spark 下载文件名:spark-2.4.4-bin-without-hadoop.tgz [hadoop@hadoop01 ~]$ tar -zxvf spark-2.4.4 ...

  6. 4.kafka API producer

    1.Producer流程首先构建待发送的消息对象ProducerRecord,然后调用KafkaProducer.send方法进行发送.KafkaProducer接收到消息后首先对其进行序列化,然后结 ...

  7. pycharm社区版对于django项目的创建

    学习django的基础的东西:python基础(虽然自己看了一遍,不过还有好多东西都是一知半解的,所以还要重复看,去加强自己的基础). 数据库SQL(自己也是对一些基础语句运用的不熟练,然后接下来的主 ...

  8. 解决Centos7安装python3后pip工具无法使用

    问题描述: Centos7安装python3,正常流程全部配置完成,python3,pip3的软链接也建立了 但是python3可以正常使用,而pip3报错,无法找到文件或目录 解决方法: which ...

  9. Windows性能计数器监控实践

    Windows性能计数器(Performance Counter)是Windows提供的一种系统功能,它能实时采集.分析系统内的应用程序.服务.驱动程序等的性能数据,以此来分析系统的瓶颈.监控组件的表 ...

  10. Docker——概念学习

    百度百科概念: Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows 机器上,也可以实现虚拟化.容器是完全 ...