推荐

MapReduce分析明星微博数据

http://git.oschina.net/ljc520313/codeexample/tree/master/bigdata/hadoop/mapreduce/05.%E6%98%8E%E6%98%9F%E5%BE%AE%E5%8D%9A%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90?dir=1&filepath=bigdata%2Fhadoop%2Fmapreduce%2F05.%E6%98%8E%E6%98%9F%E5%BE%AE%E5%8D%9A%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90&oid=854b4300ccc9fbae894f2f8c29df3ca06193f97b&sha=79a86bf0ff190e38a133bc2446b6b4ad9490f40f

  这篇博客,给大家,体会不一样的版本编程。

  执行

2016-12-12 15:07:51,762 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=
2016-12-12 15:07:52,197 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2016-12-12 15:07:52,199 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - No job jar file set. User classes may not be found. See Job or Job#setJar(String).
2016-12-12 15:07:52,216 INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input paths to process : 1
2016-12-12 15:07:52,265 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - number of splits:1
2016-12-12 15:07:52,541 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Submitting tokens for job: job_local1414008937_0001
2016-12-12 15:07:53,106 INFO [org.apache.hadoop.mapreduce.Job] - The url to track the job: http://localhost:8080/
2016-12-12 15:07:53,107 INFO [org.apache.hadoop.mapreduce.Job] - Running job: job_local1414008937_0001
2016-12-12 15:07:53,114 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter set in config null
2016-12-12 15:07:53,128 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2016-12-12 15:07:53,203 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for map tasks
2016-12-12 15:07:53,216 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1414008937_0001_m_000000_0
2016-12-12 15:07:53,271 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:07:53,374 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@65f3724c
2016-12-12 15:07:53,382 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/data/Weibodata.txt:0+174116
2016-12-12 15:07:53,443 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 15:07:53,443 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 15:07:53,443 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 15:07:53,444 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 15:07:53,444 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 15:07:53,450 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-12-12 15:07:54,110 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local1414008937_0001 running in uber mode : false
2016-12-12 15:07:54,112 INFO [org.apache.hadoop.mapreduce.Job] - map 0% reduce 0%
2016-12-12 15:07:55,068 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 15:07:55,068 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 15:07:55,068 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 15:07:55,068 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 747379; bufvoid = 104857600
2016-12-12 15:07:55,068 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26101152(104404608); length = 113245/6553600
count___________1065
2016-12-12 15:07:55,674 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 15:07:55,685 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1414008937_0001_m_000000_0 is done. And is in the process of committing
2016-12-12 15:07:55,706 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 15:07:55,706 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1414008937_0001_m_000000_0' done.
2016-12-12 15:07:55,706 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1414008937_0001_m_000000_0
2016-12-12 15:07:55,707 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map task executor complete.
2016-12-12 15:07:55,714 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for reduce tasks
2016-12-12 15:07:55,714 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1414008937_0001_r_000000_0
2016-12-12 15:07:55,727 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:07:55,754 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@24a11405
2016-12-12 15:07:55,758 INFO [org.apache.hadoop.mapred.ReduceTask] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@12efdb85
2016-12-12 15:07:55,776 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - MergerManager: memoryLimit=1327077760, maxSingleShuffleLimit=331769440, mergeThreshold=875871360, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-12-12 15:07:55,778 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - attempt_local1414008937_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2016-12-12 15:07:55,810 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local1414008937_0001_m_000000_0 decomp: 222260 len: 222264 to MEMORY
2016-12-12 15:07:55,818 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 222260 bytes from map-output for attempt_local1414008937_0001_m_000000_0
2016-12-12 15:07:55,863 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 222260, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->222260
2016-12-12 15:07:55,865 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - EventFetcher is interrupted.. Returning
2016-12-12 15:07:55,866 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 15:07:55,867 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
2016-12-12 15:07:55,876 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 15:07:55,876 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 222236 bytes
2016-12-12 15:07:55,952 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merged 1 segments, 222260 bytes to disk to satisfy reduce memory limit
2016-12-12 15:07:55,953 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 1 files, 222264 bytes from disk
2016-12-12 15:07:55,954 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 0 segments, 0 bytes from memory into reduce
2016-12-12 15:07:55,955 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 15:07:55,987 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 222236 bytes
2016-12-12 15:07:55,989 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 15:07:55,994 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2016-12-12 15:07:56,124 INFO [org.apache.hadoop.mapreduce.Job] - map 100% reduce 0%
2016-12-12 15:07:56,347 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1414008937_0001_r_000000_0 is done. And is in the process of committing
2016-12-12 15:07:56,349 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 15:07:56,349 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local1414008937_0001_r_000000_0 is allowed to commit now
2016-12-12 15:07:56,357 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task 'attempt_local1414008937_0001_r_000000_0' to file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/_temporary/0/task_local1414008937_0001_r_000000
2016-12-12 15:07:56,358 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
2016-12-12 15:07:56,359 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1414008937_0001_r_000000_0' done.
2016-12-12 15:07:56,359 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1414008937_0001_r_000000_0
2016-12-12 15:07:56,359 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1414008937_0001_r_000001_0
2016-12-12 15:07:56,365 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:07:56,391 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@464d02ee
2016-12-12 15:07:56,392 INFO [org.apache.hadoop.mapred.ReduceTask] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@69fb7b50
2016-12-12 15:07:56,394 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - MergerManager: memoryLimit=1327077760, maxSingleShuffleLimit=331769440, mergeThreshold=875871360, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-12-12 15:07:56,395 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - attempt_local1414008937_0001_r_000001_0 Thread started: EventFetcher for fetching Map Completion Events
2016-12-12 15:07:56,399 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#2 about to shuffle output of map attempt_local1414008937_0001_m_000000_0 decomp: 226847 len: 226851 to MEMORY
2016-12-12 15:07:56,401 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 226847 bytes from map-output for attempt_local1414008937_0001_m_000000_0
2016-12-12 15:07:56,401 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 226847, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->226847
2016-12-12 15:07:56,402 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - EventFetcher is interrupted.. Returning
2016-12-12 15:07:56,402 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 15:07:56,402 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
2016-12-12 15:07:56,407 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 15:07:56,407 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 226820 bytes
2016-12-12 15:07:56,488 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merged 1 segments, 226847 bytes to disk to satisfy reduce memory limit
2016-12-12 15:07:56,488 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 1 files, 226851 bytes from disk
2016-12-12 15:07:56,489 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 0 segments, 0 bytes from memory into reduce
2016-12-12 15:07:56,489 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 15:07:56,490 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 226820 bytes
2016-12-12 15:07:56,491 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 15:07:56,581 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1414008937_0001_r_000001_0 is done. And is in the process of committing
2016-12-12 15:07:56,584 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 15:07:56,584 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local1414008937_0001_r_000001_0 is allowed to commit now
2016-12-12 15:07:56,591 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task 'attempt_local1414008937_0001_r_000001_0' to file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/_temporary/0/task_local1414008937_0001_r_000001
2016-12-12 15:07:56,593 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
2016-12-12 15:07:56,593 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1414008937_0001_r_000001_0' done.
2016-12-12 15:07:56,593 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1414008937_0001_r_000001_0
2016-12-12 15:07:56,593 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1414008937_0001_r_000002_0
2016-12-12 15:07:56,596 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:07:56,640 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@36d0c62b
2016-12-12 15:07:56,640 INFO [org.apache.hadoop.mapred.ReduceTask] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@44824d2a
2016-12-12 15:07:56,641 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - MergerManager: memoryLimit=1327077760, maxSingleShuffleLimit=331769440, mergeThreshold=875871360, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-12-12 15:07:56,643 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - attempt_local1414008937_0001_r_000002_0 Thread started: EventFetcher for fetching Map Completion Events
2016-12-12 15:07:56,648 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#3 about to shuffle output of map attempt_local1414008937_0001_m_000000_0 decomp: 224215 len: 224219 to MEMORY
2016-12-12 15:07:56,650 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 224215 bytes from map-output for attempt_local1414008937_0001_m_000000_0
2016-12-12 15:07:56,650 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 224215, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->224215
2016-12-12 15:07:56,651 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - EventFetcher is interrupted.. Returning
2016-12-12 15:07:56,651 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 15:07:56,652 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
2016-12-12 15:07:56,658 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 15:07:56,658 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 224191 bytes
2016-12-12 15:07:56,675 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merged 1 segments, 224215 bytes to disk to satisfy reduce memory limit
2016-12-12 15:07:56,676 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 1 files, 224219 bytes from disk
2016-12-12 15:07:56,676 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 0 segments, 0 bytes from memory into reduce
2016-12-12 15:07:56,676 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 15:07:56,677 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 224191 bytes
2016-12-12 15:07:56,678 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 15:07:56,711 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1414008937_0001_r_000002_0 is done. And is in the process of committing
2016-12-12 15:07:56,714 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 15:07:56,714 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local1414008937_0001_r_000002_0 is allowed to commit now
2016-12-12 15:07:56,725 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task 'attempt_local1414008937_0001_r_000002_0' to file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/_temporary/0/task_local1414008937_0001_r_000002
2016-12-12 15:07:56,726 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
2016-12-12 15:07:56,727 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1414008937_0001_r_000002_0' done.
2016-12-12 15:07:56,727 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1414008937_0001_r_000002_0
2016-12-12 15:07:56,727 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1414008937_0001_r_000003_0
2016-12-12 15:07:56,729 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:07:56,749 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@42ed705f
2016-12-12 15:07:56,750 INFO [org.apache.hadoop.mapred.ReduceTask] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@726c8f4c
2016-12-12 15:07:56,751 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - MergerManager: memoryLimit=1327077760, maxSingleShuffleLimit=331769440, mergeThreshold=875871360, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-12-12 15:07:56,752 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - attempt_local1414008937_0001_r_000003_0 Thread started: EventFetcher for fetching Map Completion Events
2016-12-12 15:07:56,757 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#4 about to shuffle output of map attempt_local1414008937_0001_m_000000_0 decomp: 14 len: 18 to MEMORY
2016-12-12 15:07:56,758 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 14 bytes from map-output for attempt_local1414008937_0001_m_000000_0
2016-12-12 15:07:56,758 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 14, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->14
2016-12-12 15:07:56,759 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - EventFetcher is interrupted.. Returning
2016-12-12 15:07:56,759 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 15:07:56,759 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
2016-12-12 15:07:56,764 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 15:07:56,764 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 6 bytes
2016-12-12 15:07:56,765 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merged 1 segments, 14 bytes to disk to satisfy reduce memory limit
2016-12-12 15:07:56,765 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 1 files, 18 bytes from disk
2016-12-12 15:07:56,765 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 0 segments, 0 bytes from memory into reduce
2016-12-12 15:07:56,765 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 15:07:56,766 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 6 bytes
2016-12-12 15:07:56,766 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
count___________1065
2016-12-12 15:07:56,770 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1414008937_0001_r_000003_0 is done. And is in the process of committing
2016-12-12 15:07:56,771 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 15:07:56,771 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local1414008937_0001_r_000003_0 is allowed to commit now
2016-12-12 15:07:56,777 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task 'attempt_local1414008937_0001_r_000003_0' to file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/_temporary/0/task_local1414008937_0001_r_000003
2016-12-12 15:07:56,778 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
2016-12-12 15:07:56,778 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1414008937_0001_r_000003_0' done.
2016-12-12 15:07:56,778 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1414008937_0001_r_000003_0
2016-12-12 15:07:56,779 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce task executor complete.
2016-12-12 15:07:57,127 INFO [org.apache.hadoop.mapreduce.Job] - map 100% reduce 100%
2016-12-12 15:07:57,137 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local1414008937_0001 completed successfully
2016-12-12 15:07:57,186 INFO [org.apache.hadoop.mapreduce.Job] - Counters: 33
File System Counters
FILE: Number of bytes read=4937350
FILE: Number of bytes written=8113860
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=1065
Map output records=28312
Map output bytes=747379
Map output materialized bytes=673352
Input split bytes=127
Combine input records=28312
Combine output records=23098
Reduce input groups=23098
Reduce shuffle bytes=673352
Reduce input records=23098
Reduce output records=23098
Spilled Records=46196
Shuffled Maps =4
Failed Shuffles=0
Merged Map outputs=4
GC time elapsed (ms)=165
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=1672478720
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=174116
File Output Format Counters
Bytes Written=585532

  执行

2016-12-12 15:10:36,011 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=
2016-12-12 15:10:36,436 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2016-12-12 15:10:36,438 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - No job jar file set. User classes may not be found. See Job or Job#setJar(String).
2016-12-12 15:10:36,892 INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input paths to process : 4
2016-12-12 15:10:36,959 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - number of splits:4
2016-12-12 15:10:37,215 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Submitting tokens for job: job_local564512176_0001
2016-12-12 15:10:37,668 INFO [org.apache.hadoop.mapreduce.Job] - The url to track the job: http://localhost:8080/
2016-12-12 15:10:37,670 INFO [org.apache.hadoop.mapreduce.Job] - Running job: job_local564512176_0001
2016-12-12 15:10:37,672 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter set in config null
2016-12-12 15:10:37,685 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2016-12-12 15:10:37,757 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for map tasks
2016-12-12 15:10:37,759 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local564512176_0001_m_000000_0
2016-12-12 15:10:37,822 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:10:37,854 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@12633e10
2016-12-12 15:10:37,861 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/part-r-00001:0+195718
2016-12-12 15:10:37,924 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 15:10:37,924 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 15:10:37,925 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 15:10:37,925 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 15:10:37,925 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 15:10:37,932 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-12-12 15:10:38,401 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 15:10:38,402 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 15:10:38,402 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 15:10:38,402 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 78968; bufvoid = 104857600
2016-12-12 15:10:38,402 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26183268(104733072); length = 31129/6553600
2016-12-12 15:10:38,673 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local564512176_0001 running in uber mode : false
2016-12-12 15:10:38,676 INFO [org.apache.hadoop.mapreduce.Job] - map 0% reduce 0%
2016-12-12 15:10:38,724 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 15:10:38,730 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local564512176_0001_m_000000_0 is done. And is in the process of committing
2016-12-12 15:10:38,744 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 15:10:38,744 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local564512176_0001_m_000000_0' done.
2016-12-12 15:10:38,745 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local564512176_0001_m_000000_0
2016-12-12 15:10:38,745 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local564512176_0001_m_000001_0
2016-12-12 15:10:38,748 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:10:38,778 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@43aa735f
2016-12-12 15:10:38,784 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/part-r-00002:0+193443
2016-12-12 15:10:38,820 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 15:10:38,820 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 15:10:38,820 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 15:10:38,821 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 15:10:38,821 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 15:10:38,822 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-12-12 15:10:39,017 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 15:10:39,017 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 15:10:39,018 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 15:10:39,018 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 78027; bufvoid = 104857600
2016-12-12 15:10:39,018 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26183624(104734496); length = 30773/6553600
2016-12-12 15:10:39,157 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 15:10:39,162 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local564512176_0001_m_000001_0 is done. And is in the process of committing
2016-12-12 15:10:39,166 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 15:10:39,166 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local564512176_0001_m_000001_0' done.
2016-12-12 15:10:39,166 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local564512176_0001_m_000001_0
2016-12-12 15:10:39,167 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local564512176_0001_m_000002_0
2016-12-12 15:10:39,171 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:10:39,219 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@405f4f03
2016-12-12 15:10:39,222 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/part-r-00000:0+191780
2016-12-12 15:10:39,265 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 15:10:39,265 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 15:10:39,265 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 15:10:39,265 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 15:10:39,265 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 15:10:39,270 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-12-12 15:10:39,311 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 15:10:39,311 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 15:10:39,311 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 15:10:39,311 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 77478; bufvoid = 104857600
2016-12-12 15:10:39,312 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26183920(104735680); length = 30477/6553600
2016-12-12 15:10:39,360 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 15:10:39,365 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local564512176_0001_m_000002_0 is done. And is in the process of committing
2016-12-12 15:10:39,368 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 15:10:39,369 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local564512176_0001_m_000002_0' done.
2016-12-12 15:10:39,369 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local564512176_0001_m_000002_0
2016-12-12 15:10:39,369 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local564512176_0001_m_000003_0
2016-12-12 15:10:39,372 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:10:39,416 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@4e5497cb
2016-12-12 15:10:39,419 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/part-r-00003:0+11
2016-12-12 15:10:39,461 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 15:10:39,461 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 15:10:39,461 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 15:10:39,461 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 15:10:39,462 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 15:10:39,463 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-12-12 15:10:39,466 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 15:10:39,466 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 15:10:39,479 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local564512176_0001_m_000003_0 is done. And is in the process of committing
2016-12-12 15:10:39,482 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 15:10:39,482 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local564512176_0001_m_000003_0' done.
2016-12-12 15:10:39,482 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local564512176_0001_m_000003_0
2016-12-12 15:10:39,482 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map task executor complete.
2016-12-12 15:10:39,487 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for reduce tasks
2016-12-12 15:10:39,488 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local564512176_0001_r_000000_0
2016-12-12 15:10:39,497 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:10:39,519 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@6d565f45
2016-12-12 15:10:39,523 INFO [org.apache.hadoop.mapred.ReduceTask] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@1f719a8d
2016-12-12 15:10:39,538 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - MergerManager: memoryLimit=1327077760, maxSingleShuffleLimit=331769440, mergeThreshold=875871360, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-12-12 15:10:39,541 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - attempt_local564512176_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2016-12-12 15:10:39,583 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local564512176_0001_m_000002_0 decomp: 37768 len: 37772 to MEMORY
2016-12-12 15:10:39,589 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 37768 bytes from map-output for attempt_local564512176_0001_m_000002_0
2016-12-12 15:10:39,638 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 37768, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->37768
2016-12-12 15:10:39,644 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local564512176_0001_m_000001_0 decomp: 37233 len: 37237 to MEMORY
2016-12-12 15:10:39,646 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 37233 bytes from map-output for attempt_local564512176_0001_m_000001_0
2016-12-12 15:10:39,647 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 37233, inMemoryMapOutputs.size() -> 2, commitMemory -> 37768, usedMemory ->75001
2016-12-12 15:10:39,652 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local564512176_0001_m_000000_0 decomp: 37343 len: 37347 to MEMORY
2016-12-12 15:10:39,653 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 37343 bytes from map-output for attempt_local564512176_0001_m_000000_0
2016-12-12 15:10:39,654 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 37343, inMemoryMapOutputs.size() -> 3, commitMemory -> 75001, usedMemory ->112344
2016-12-12 15:10:39,658 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local564512176_0001_m_000003_0 decomp: 2 len: 6 to MEMORY
2016-12-12 15:10:39,659 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 2 bytes from map-output for attempt_local564512176_0001_m_000003_0
2016-12-12 15:10:39,660 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 2, inMemoryMapOutputs.size() -> 4, commitMemory -> 112344, usedMemory ->112346
2016-12-12 15:10:39,660 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - EventFetcher is interrupted.. Returning
2016-12-12 15:10:39,661 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 4 / 4 copied.
2016-12-12 15:10:39,662 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - finalMerge called with 4 in-memory map-outputs and 0 on-disk map-outputs
2016-12-12 15:10:39,673 INFO [org.apache.hadoop.mapred.Merger] - Merging 4 sorted segments
2016-12-12 15:10:39,674 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 3 segments left of total size: 112332 bytes
2016-12-12 15:10:39,678 INFO [org.apache.hadoop.mapreduce.Job] - map 100% reduce 0%
2016-12-12 15:10:39,780 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merged 4 segments, 112346 bytes to disk to satisfy reduce memory limit
2016-12-12 15:10:39,781 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 1 files, 112344 bytes from disk
2016-12-12 15:10:39,783 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 0 segments, 0 bytes from memory into reduce
2016-12-12 15:10:39,784 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 15:10:39,785 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 112336 bytes
2016-12-12 15:10:39,785 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 4 / 4 copied.
2016-12-12 15:10:39,792 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2016-12-12 15:10:40,343 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local564512176_0001_r_000000_0 is done. And is in the process of committing
2016-12-12 15:10:40,346 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 4 / 4 copied.
2016-12-12 15:10:40,346 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local564512176_0001_r_000000_0 is allowed to commit now
2016-12-12 15:10:40,353 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task 'attempt_local564512176_0001_r_000000_0' to file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo2/_temporary/0/task_local564512176_0001_r_000000
2016-12-12 15:10:40,363 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
2016-12-12 15:10:40,364 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local564512176_0001_r_000000_0' done.
2016-12-12 15:10:40,364 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local564512176_0001_r_000000_0
2016-12-12 15:10:40,364 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce task executor complete.
2016-12-12 15:10:40,678 INFO [org.apache.hadoop.mapreduce.Job] - map 100% reduce 100%
2016-12-12 15:10:40,678 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local564512176_0001 completed successfully
2016-12-12 15:10:40,701 INFO [org.apache.hadoop.mapreduce.Job] - Counters: 33
File System Counters
FILE: Number of bytes read=2579152
FILE: Number of bytes written=1581170
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=23098
Map output records=23097
Map output bytes=234473
Map output materialized bytes=112362
Input split bytes=528
Combine input records=23097
Combine output records=8774
Reduce input groups=5567
Reduce shuffle bytes=112362
Reduce input records=8774
Reduce output records=5567
Spilled Records=17548
Shuffled Maps =4
Failed Shuffles=0
Merged Map outputs=4
GC time elapsed (ms)=48
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=2114977792
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=585564
File Output Format Counters
Bytes Written=50762
执行job成功

  执行

2016-12-12 15:12:33,225 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=
2016-12-12 15:12:33,823 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2016-12-12 15:12:33,824 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - No job jar file set. User classes may not be found. See Job or Job#setJar(String).
2016-12-12 15:12:34,364 INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input paths to process : 4
2016-12-12 15:12:34,410 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - number of splits:4
2016-12-12 15:12:34,729 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Submitting tokens for job: job_local671371338_0001
2016-12-12 15:12:35,471 INFO [org.apache.hadoop.mapred.LocalDistributedCacheManager] - Creating symlink: \tmp\hadoop-Administrator\mapred\local\1481526755080\part-r-00003 <- D:\Code\MyEclipseJavaCode\myMapReduce/part-r-00003
2016-12-12 15:12:35,516 INFO [org.apache.hadoop.mapred.LocalDistributedCacheManager] - Localized file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/part-r-00003 as file:/tmp/hadoop-Administrator/mapred/local/1481526755080/part-r-00003
2016-12-12 15:12:35,521 INFO [org.apache.hadoop.mapred.LocalDistributedCacheManager] - Creating symlink: \tmp\hadoop-Administrator\mapred\local\1481526755081\part-r-00000 <- D:\Code\MyEclipseJavaCode\myMapReduce/part-r-00000
2016-12-12 15:12:35,544 INFO [org.apache.hadoop.mapred.LocalDistributedCacheManager] - Localized file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo2/part-r-00000 as file:/tmp/hadoop-Administrator/mapred/local/1481526755081/part-r-00000
2016-12-12 15:12:35,696 INFO [org.apache.hadoop.mapreduce.Job] - The url to track the job: http://localhost:8080/
2016-12-12 15:12:35,697 INFO [org.apache.hadoop.mapreduce.Job] - Running job: job_local671371338_0001
2016-12-12 15:12:35,703 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter set in config null
2016-12-12 15:12:35,715 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2016-12-12 15:12:35,772 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for map tasks
2016-12-12 15:12:35,772 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local671371338_0001_m_000000_0
2016-12-12 15:12:35,819 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:12:35,852 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@50b97c8b
2016-12-12 15:12:35,858 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/part-r-00001:0+195718
2016-12-12 15:12:35,926 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 15:12:35,926 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 15:12:35,926 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 15:12:35,926 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 15:12:35,927 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 15:12:35,938 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
******************
2016-12-12 15:12:36,701 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local671371338_0001 running in uber mode : false
2016-12-12 15:12:36,703 INFO [org.apache.hadoop.mapreduce.Job] - map 0% reduce 0%
2016-12-12 15:12:36,965 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 15:12:36,966 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 15:12:36,966 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 15:12:36,966 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 239755; bufvoid = 104857600
2016-12-12 15:12:36,966 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26183268(104733072); length = 31129/6553600
2016-12-12 15:12:37,135 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 15:12:37,141 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local671371338_0001_m_000000_0 is done. And is in the process of committing
2016-12-12 15:12:37,153 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 15:12:37,153 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local671371338_0001_m_000000_0' done.
2016-12-12 15:12:37,154 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local671371338_0001_m_000000_0
2016-12-12 15:12:37,154 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local671371338_0001_m_000001_0
2016-12-12 15:12:37,156 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:12:37,191 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@70849e34
2016-12-12 15:12:37,194 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/part-r-00002:0+193443
2016-12-12 15:12:37,229 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 15:12:37,229 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 15:12:37,229 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 15:12:37,230 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 15:12:37,230 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 15:12:37,230 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
******************
2016-12-12 15:12:37,601 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 15:12:37,602 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 15:12:37,602 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 15:12:37,602 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 237126; bufvoid = 104857600
2016-12-12 15:12:37,602 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26183624(104734496); length = 30773/6553600
2016-12-12 15:12:37,651 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 15:12:37,683 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local671371338_0001_m_000001_0 is done. And is in the process of committing
2016-12-12 15:12:37,687 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 15:12:37,687 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local671371338_0001_m_000001_0' done.
2016-12-12 15:12:37,687 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local671371338_0001_m_000001_0
2016-12-12 15:12:37,687 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local671371338_0001_m_000002_0
2016-12-12 15:12:37,690 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:12:37,722 INFO [org.apache.hadoop.mapreduce.Job] - map 100% reduce 0%
2016-12-12 15:12:37,810 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@544b0d4c
2016-12-12 15:12:37,813 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/part-r-00000:0+191780
2016-12-12 15:12:37,851 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 15:12:37,851 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 15:12:37,851 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 15:12:37,851 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 15:12:37,852 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 15:12:37,853 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
******************
2016-12-12 15:12:37,915 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 15:12:37,915 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 15:12:37,916 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 15:12:37,916 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 234731; bufvoid = 104857600
2016-12-12 15:12:37,916 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26183920(104735680); length = 30477/6553600
2016-12-12 15:12:37,939 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 15:12:37,943 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local671371338_0001_m_000002_0 is done. And is in the process of committing
2016-12-12 15:12:37,946 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 15:12:37,946 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local671371338_0001_m_000002_0' done.
2016-12-12 15:12:37,946 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local671371338_0001_m_000002_0
2016-12-12 15:12:37,947 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local671371338_0001_m_000003_0
2016-12-12 15:12:37,950 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:12:37,999 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@6c241f31
2016-12-12 15:12:38,002 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo1/part-r-00003:0+11
2016-12-12 15:12:38,046 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 15:12:38,046 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 15:12:38,046 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 15:12:38,046 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 15:12:38,046 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 15:12:38,047 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
******************
2016-12-12 15:12:38,050 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 15:12:38,050 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 15:12:38,060 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local671371338_0001_m_000003_0 is done. And is in the process of committing
2016-12-12 15:12:38,063 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 15:12:38,063 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local671371338_0001_m_000003_0' done.
2016-12-12 15:12:38,064 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local671371338_0001_m_000003_0
2016-12-12 15:12:38,064 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map task executor complete.
2016-12-12 15:12:38,067 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for reduce tasks
2016-12-12 15:12:38,067 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local671371338_0001_r_000000_0
2016-12-12 15:12:38,079 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 15:12:38,104 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@777da320
2016-12-12 15:12:38,116 INFO [org.apache.hadoop.mapred.ReduceTask] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@76a01b4b
2016-12-12 15:12:38,133 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - MergerManager: memoryLimit=1327077760, maxSingleShuffleLimit=331769440, mergeThreshold=875871360, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-12-12 15:12:38,135 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - attempt_local671371338_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2016-12-12 15:12:38,165 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local671371338_0001_m_000001_0 decomp: 252516 len: 252520 to MEMORY
2016-12-12 15:12:38,169 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 252516 bytes from map-output for attempt_local671371338_0001_m_000001_0
2016-12-12 15:12:38,216 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 252516, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->252516
2016-12-12 15:12:38,221 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local671371338_0001_m_000002_0 decomp: 249973 len: 249977 to MEMORY
2016-12-12 15:12:38,223 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 249973 bytes from map-output for attempt_local671371338_0001_m_000002_0
2016-12-12 15:12:38,224 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 249973, inMemoryMapOutputs.size() -> 2, commitMemory -> 252516, usedMemory ->502489
2016-12-12 15:12:38,230 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local671371338_0001_m_000000_0 decomp: 255323 len: 255327 to MEMORY
2016-12-12 15:12:38,233 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 255323 bytes from map-output for attempt_local671371338_0001_m_000000_0
2016-12-12 15:12:38,233 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 255323, inMemoryMapOutputs.size() -> 3, commitMemory -> 502489, usedMemory ->757812
2016-12-12 15:12:38,235 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local671371338_0001_m_000003_0 decomp: 2 len: 6 to MEMORY
2016-12-12 15:12:38,236 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 2 bytes from map-output for attempt_local671371338_0001_m_000003_0
2016-12-12 15:12:38,236 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 2, inMemoryMapOutputs.size() -> 4, commitMemory -> 757812, usedMemory ->757814
2016-12-12 15:12:38,237 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - EventFetcher is interrupted.. Returning
2016-12-12 15:12:38,238 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 4 / 4 copied.
2016-12-12 15:12:38,238 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - finalMerge called with 4 in-memory map-outputs and 0 on-disk map-outputs
2016-12-12 15:12:38,252 INFO [org.apache.hadoop.mapred.Merger] - Merging 4 sorted segments
2016-12-12 15:12:38,253 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 3 segments left of total size: 757755 bytes
2016-12-12 15:12:38,413 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merged 4 segments, 757814 bytes to disk to satisfy reduce memory limit
2016-12-12 15:12:38,414 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 1 files, 757812 bytes from disk
2016-12-12 15:12:38,415 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 0 segments, 0 bytes from memory into reduce
2016-12-12 15:12:38,415 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 15:12:38,416 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 757789 bytes
2016-12-12 15:12:38,433 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 4 / 4 copied.
2016-12-12 15:12:38,439 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2016-12-12 15:12:38,844 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local671371338_0001_r_000000_0 is done. And is in the process of committing
2016-12-12 15:12:38,846 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 4 / 4 copied.
2016-12-12 15:12:38,846 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local671371338_0001_r_000000_0 is allowed to commit now
2016-12-12 15:12:38,857 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task 'attempt_local671371338_0001_r_000000_0' to file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/weibo3/_temporary/0/task_local671371338_0001_r_000000
2016-12-12 15:12:38,861 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
2016-12-12 15:12:38,861 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local671371338_0001_r_000000_0' done.
2016-12-12 15:12:38,861 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local671371338_0001_r_000000_0
2016-12-12 15:12:38,862 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce task executor complete.
2016-12-12 15:12:39,724 INFO [org.apache.hadoop.mapreduce.Job] - map 100% reduce 100%
2016-12-12 15:12:39,726 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local671371338_0001 completed successfully
2016-12-12 15:12:39,841 INFO [org.apache.hadoop.mapreduce.Job] - Counters: 33
File System Counters
FILE: Number of bytes read=4124093
FILE: Number of bytes written=5365498
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=23098
Map output records=23097
Map output bytes=711612
Map output materialized bytes=757830
Input split bytes=528
Combine input records=0
Combine output records=0
Reduce input groups=1065
Reduce shuffle bytes=757830
Reduce input records=23097
Reduce output records=1065
Spilled Records=46194
Shuffled Maps =4
Failed Shuffles=0
Merged Map outputs=4
GC time elapsed (ms)=30
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=2353528832
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=585564
File Output Format Counters
Bytes Written=340785
执行job成功

  

代码

 package zhouls.bigdata.myMapReduce.weibo;

 import java.io.IOException;

 import java.io.StringReader;

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme; /**
* 第一个MR,计算TF和计算N(微博总数)
* @author root
*
*/
public class FirstMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ protected void map(LongWritable key, Text value,
Context context)
throws IOException, InterruptedException {
// 3823890201582094 今天我约了豆浆,油条。约了电饭煲几小时后饭就自动煮好,还想约豆浆机,让我早晨多睡一小时,豆浆就自然好。起床就可以喝上香喷喷的豆浆了。
// 3823890210294392 今天我约了豆浆,油条
String[] v =value.toString().trim().split("\t");
if(v.length>=2){
String id=v[0].trim();
String content =v[1].trim(); StringReader sr =new StringReader(content);//content是新浪微博内容
IKSegmenter ikSegmenter =new IKSegmenter(sr, true);
Lexeme word=null;
//第一件事情,就是通过IK分词器(IKAnalyzer),把weibo2.txt里 的内容
//这里,单独可以去网上找到IKAnalyzer2012_FF.jar。然后像我这样,放到lib下,必须要选中,然后Build Path -> Add Build Path while( (word=ikSegmenter.next()) !=null ){
String w= word.getLexemeText();//w是词条
context.write(new Text(w+"_"+id), new IntWritable(1));
}
context.write(new Text("count"), new IntWritable(1));
}else{
System.out.println(value.toString()+"-------------");//为什么要来----------,是因为方便统计TF,因为TF是某一篇微博词条的词频。
}
} }
 package zhouls.bigdata.myMapReduce.weibo;

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner; /**
* 第一个MR自定义分区
* @author root
*
*/
public class FirstPartition extends HashPartitioner<Text, IntWritable>{ public int getPartition(Text key, IntWritable value, int reduceCount) {
if(key.equals(new Text("count")))
return 3;//总共拿4个reduce,其中拿1个reduce去输出微博总数,拿3个reduce去输出微博词频。
else
return super.getPartition(key, value, reduceCount-1);
} }
 package zhouls.bigdata.myMapReduce.weibo;

 import java.io.IOException;

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
/**
* c1_001,2
* c2_001,1
* count,10000
* @author root
*
*/
public class FirstReduce extends Reducer<Text, IntWritable, Text, IntWritable>{ protected void reduce(Text arg0, Iterable<IntWritable> arg1,
Context arg2)
throws IOException, InterruptedException { int sum =0;
for( IntWritable i :arg1 ){
sum= sum+i.get();
}
if(arg0.equals(new Text("count"))){
System.out.println(arg0.toString() +"___________"+sum);
}
arg2.write(arg0, new IntWritable(sum));
} }
 package zhouls.bigdata.myMapReduce.weibo;

 import java.io.IOException;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FirstJob { public static void main(String[] args) {
Configuration config =new Configuration();
// config.set("fs.defaultFS", "hdfs://HadoopMaster:9000");
// config.set("yarn.resourcemanager.hostname", "HadoopMaster");
try {
FileSystem fs =FileSystem.get(config);
// JobConf job =new JobConf(config);
Job job =Job.getInstance(config);
job.setJarByClass(FirstJob.class);
job.setJobName("weibo1"); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// job.setMapperClass();
job.setNumReduceTasks(4);
job.setPartitionerClass(FirstPartition.class);
job.setMapperClass(FirstMapper.class);
job.setCombinerClass(FirstReduce.class);
job.setReducerClass(FirstReduce.class); //
// FileInputFormat.addInputPath(job, new Path("hdfs://HadoopMaster:9000/Weibodata.txt"));//下有数据源,Weibodata.txt
//
// Path path =new Path("hdfs://HadoopMaster:9000/out/weibo1"); FileInputFormat.addInputPath(job, new Path("./data/weibo/Weibodata.txt"));//下有数据源,Weibodata.txt Path path =new Path("./out/weibo1"); // part-r-00000
// part-r-00001
// part-r-00002 拿3个reduce去输出微博词频。
// part-r-00003 最后这个是输出微博总数,
if(fs.exists(path)){
fs.delete(path, true);
}
FileOutputFormat.setOutputPath(job,path); boolean f= job.waitForCompletion(true);
if(f){ }
} catch (Exception e) {
e.printStackTrace();
}
}
}
 package zhouls.bigdata.myMapReduce.weibo;

 import java.io.IOException;

 import java.io.StringReader;

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;
//统计df:词在多少个微博中出现过。
public class TwoMapper extends Mapper<LongWritable, Text, Text, IntWritable> { protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException { //获取当前 mapper task的数据片段(split)
FileSplit fs = (FileSplit) context.getInputSplit(); if (!fs.getPath().getName().contains("part-r-00003")) { String[] v = value.toString().trim().split("\t");
if (v.length >= 2) {
String[] ss = v[0].split("_");
if (ss.length >= 2) {
String w = ss[0];
context.write(new Text(w), new IntWritable(1));
}
} else {
System.out.println(value.toString() + "-------------");
}
} }
}
 package zhouls.bigdata.myMapReduce.weibo;

 import java.io.IOException;

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class TwoReduce extends Reducer<Text, IntWritable, Text, IntWritable>{ protected void reduce(Text key, Iterable<IntWritable> arg1,
Context context)
throws IOException, InterruptedException { int sum =0;
for( IntWritable i :arg1 ){
sum= sum+i.get();
} context.write(key, new IntWritable(sum));
} }
 package zhouls.bigdata.myMapReduce.weibo;

 import java.io.IOException;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class TwoJob { public static void main(String[] args) {
Configuration config =new Configuration();
// config.set("fs.defaultFS", "hdfs://HadoopMaster:9000");
// config.set("yarn.resourcemanager.hostname", "HadoopMaster");
try {
// JobConf job =new JobConf(config);
Job job =Job.getInstance(config);
job.setJarByClass(TwoJob.class);
job.setJobName("weibo2");
//设置map任务的输出key类型、value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// job.setMapperClass();
job.setMapperClass(TwoMapper.class);
job.setCombinerClass(TwoReduce.class);
job.setReducerClass(TwoReduce.class); //mr运行时的输入数据从hdfs的哪个目录中获取
// FileInputFormat.addInputPath(job, new Path("hdfs://HadoopMaster:9000/out/weibo1/"));
// FileOutputFormat.setOutputPath(job, new Path("hdfs://HadoopMaster:9000/out/weibo2")); FileInputFormat.addInputPath(job, new Path("./out/weibo1/"));
FileOutputFormat.setOutputPath(job, new Path("./out/weibo2")); boolean f= job.waitForCompletion(true);
if(f){
System.out.println("执行job成功");
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
 package zhouls.bigdata.myMapReduce.weibo;

 import java.io.BufferedReader;

 import java.io.File;
import java.io.FileInputStream;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.StringReader;
import java.net.URI;
import java.text.NumberFormat;
import java.util.HashMap;
import java.util.Map; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme; /**
* 最后计算
* @author root
*
*/
public class LastMapper extends Mapper<LongWritable, Text, Text, Text> {
//存放微博总数
public static Map<String, Integer> cmap = null;
//存放df
public static Map<String, Integer> df = null; // 在map方法执行之前
protected void setup(Context context) throws IOException,
InterruptedException {
System.out.println("******************");
if (cmap == null || cmap.size() == 0 || df == null || df.size() == 0) { URI[] ss = context.getCacheFiles();
if (ss != null) {
for (int i = 0; i < ss.length; i++) {
URI uri = ss[i];
if (uri.getPath().endsWith("part-r-00003")) {//微博总数
Path path =new Path(uri.getPath());
// FileSystem fs =FileSystem.get(context.getConfiguration());
// fs.open(path);
BufferedReader br = new BufferedReader(new FileReader(path.getName()));
String line = br.readLine();
if (line.startsWith("count")) {
String[] ls = line.split("\t");
cmap = new HashMap<String, Integer>();
cmap.put(ls[0], Integer.parseInt(ls[1].trim()));
}
br.close();
} else if (uri.getPath().endsWith("part-r-00000")) {//词条的DF
df = new HashMap<String, Integer>();
Path path =new Path(uri.getPath());
BufferedReader br = new BufferedReader(new FileReader(path.getName()));
String line;
while ((line = br.readLine()) != null) {
String[] ls = line.split("\t");
df.put(ls[0], Integer.parseInt(ls[1].trim()));
}
br.close();
}
}
}
}
} protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
FileSplit fs = (FileSplit) context.getInputSplit();
// System.out.println("--------------------");
if (!fs.getPath().getName().contains("part-r-00003")) { String[] v = value.toString().trim().split("\t");
if (v.length >= 2) {
int tf =Integer.parseInt(v[1].trim());//tf值
String[] ss = v[0].split("_");
if (ss.length >= 2) {
String w = ss[0];
String id=ss[1]; double s=tf * Math.log(cmap.get("count")/df.get(w));
NumberFormat nf =NumberFormat.getInstance();
nf.setMaximumFractionDigits(5);
context.write(new Text(id), new Text(w+":"+nf.format(s)));
}
} else {
System.out.println(value.toString() + "-------------");
}
}
}
}
 package zhouls.bigdata.myMapReduce.weibo;

 import java.io.IOException;

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class LastReduce extends Reducer<Text, Text, Text, Text>{ protected void reduce(Text key, Iterable<Text> arg1,
Context context)
throws IOException, InterruptedException { StringBuffer sb =new StringBuffer(); for( Text i :arg1 ){
sb.append(i.toString()+"\t");
} context.write(key, new Text(sb.toString()));
} }
 package zhouls.bigdata.myMapReduce.weibo;

 import java.io.IOException;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class LastJob {
public static void main(String[] args) {
Configuration config =new Configuration();
// config.set("fs.defaultFS", "hdfs://HadoopMaster:9000");
// config.set("yarn.resourcemanager.hostname", "HadoopMaster");
// config.set("mapred.jar", "C:\\Users\\Administrator\\Desktop\\weibo3.jar");
try {
FileSystem fs =FileSystem.get(config);
// JobConf job =new JobConf(config);
Job job =Job.getInstance(config);
job.setJarByClass(LastJob.class);
job.setJobName("weibo3"); // DistributedCache.addCacheFile(uri, conf);
//2.5
//把微博总数加载到内存
// job.addCacheFile(new Path("hdfs://HadoopMaster:9000/out/weibo1/part-r-00003").toUri());
// //把df加载到内存
// job.addCacheFile(new Path("hdfs://HadoopMaster:9000/out/weibo2/part-r-00000").toUri()); job.addCacheFile(new Path("./out/weibo1/part-r-00003").toUri());
//把df加载到内存
job.addCacheFile(new Path("./out/weibo2/part-r-00000").toUri()); //设置map任务的输出key类型、value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
// job.setMapperClass();
job.setMapperClass(LastMapper.class);
job.setReducerClass(LastReduce.class); //mr运行时的输入数据从hdfs的哪个目录中获取
// FileInputFormat.addInputPath(job, new Path("hdfs://HadoopMaster:9000/out/weibo1"));
// Path outpath =new Path("hdfs://HadoopMaster:9000/out/weibo3/"); FileInputFormat.addInputPath(job, new Path("./out/weibo1"));
Path outpath =new Path("./out/weibo3/"); if(fs.exists(outpath)){
fs.delete(outpath, true);
}
FileOutputFormat.setOutputPath(job,outpath ); boolean f= job.waitForCompletion(true);
if(f){
System.out.println("执行job成功");
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
 package zhouls.bigdata.myMapReduce.weibo;

 import java.text.NumberFormat;

 public class Test {

     public static void main(String[] args) {
double s=34 * Math.log(1056/5);
NumberFormat nf =NumberFormat.getInstance();
nf.setMaximumFractionDigits(5);
System.out.println(nf.format(s));
}
}

Hadoop MapReduce编程 API入门系列之多个Job迭代式MapReduce运行(十二)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  2. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  3. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  4. Hadoop MapReduce编程 API入门系列之Crime数据分析(二十五)(未完)

    不多说,直接上代码. 一共12列,我们只需提取有用的列:第二列(犯罪类型).第四列(一周的哪一天).第五列(具体时间)和第七列(犯罪场所). 思路分析 基于项目的需求,我们通过以下几步完成: 1.首先 ...

  5. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

  6. Hadoop MapReduce编程 API入门系列之MapReduce多种输入格式(十七)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.i ...

  7. Hadoop MapReduce编程 API入门系列之自定义多种输入格式数据类型和排序多种输出格式(十一)

    推荐 MapReduce分析明星微博数据 http://git.oschina.net/ljc520313/codeexample/tree/master/bigdata/hadoop/mapredu ...

  8. Hadoop MapReduce编程 API入门系列之wordcount版本1(五)

    这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; im ...

  9. Hadoop MapReduce编程 API入门系列之薪水统计(三十一)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.SalaryCount; import java.io.IOException; import jav ...

随机推荐

  1. dataGridView 设置

    //窗体加载事件 //内容居中 dataGridView1.RowsDefaultCellStyle.Alignment = DataGridViewContentAlignment.MiddleCe ...

  2. 安装mysql遇到的几个坑

    1. 官网下载压缩版mysql,配置太复杂 弃之 2. 官网下载最新版本mysql安装包 5.8.X,安装成功,一路next,安装成功后发现没有看到自定义安装路径,查看mysql安装完成的路径果然在C ...

  3. Tomcat Eclipse Debug出现异常

    1.可能是java类没有及时更新成class文件2.本地程序没有同步到Tommcat服务器里面3.Servlet类里面加了版本号private static final long serialVers ...

  4. springboot 大致启动流程

    SpringApplication的run方法的实现是我们本次旅程的主要线路,该方法的主要流程大体可以归纳如下: 1) 如果我们使用的是SpringApplication的静态run方法,那么,这个方 ...

  5. JVM 性能调优监控工具 jps、jstack、jmap、jhat、jstat、hprof 使用详解

    转自:  https://my.oschina.net/feichexia/blog/196575 摘要: JDK本身提供了很多方便的JVM性能调优监控工具,除了集成式的VisualVM和jConso ...

  6. linux -- 扩容 /home 空间( xfs文件系统分区扩容指定挂载点)

    问题: /home空间容量不够使用,扩容卷组,扩容挂载点 方法: 1. 确认有可用的物理磁盘 fdisk -l -- 查看磁盘信息 df -h -- 查看当前挂载信息 vgs -- 查看当前卷组信息 ...

  7. touch:命令创建文件

    touch:创建空文件或改变文件的时间戳属性 [功能说明] touch命令有两个功能:一是创建新的空文件:二是改变已有文件的时间戳属性 [语法格式] touch [option] [file] tou ...

  8. Java 实现线程安全的三种方式

    一个程序在运行起来的时候会转换成进程,通常含有多个线程. 通常情况下,一个进程中的比较耗时的操作(如长循环.文件上传下载.网络资源获取等),往往会采用多线程来解决. 比如显示生活中,银行取钱问题.火车 ...

  9. 权值线段树&线段树合并

    权值线段树 所谓权值线段树,就是一种维护值而非下标的线段树,我个人倾向于称呼它为值域线段树. 举个栗子:对于一个给定的数组,普通线段树可以维护某个子数组中数的和,而权值线段树可以维护某个区间内数组元素 ...

  10. SpringBoot 读取配置文件的值 赋给静态变量

    需求:写了一个工具类,但是工具类中的一些变量需要放到配置文件中,而这个工具类中的变量与方法都是静态的,这个时候我需要一个办法将配置文件中的相关配置读取过来赋值给这些静态变量.找了一些文章,试了一些方法 ...